Redis on Spark:Task not serializable

We use Redis on Spark to cache our key-value pairs.This is the code:

import com.redis.RedisClient
val r = new RedisClient("192.168.1.101", 6379)
val perhit = perhitFile.map(x => {
val arr = x.split(" ")
val readId = arr(0).toInt
val refId = arr(1).toInt
val start = arr(2).toInt
val end = arr(3).toInt
val refStr = r.hmget("refStr", refId).get(refId).split(",")(1)
val readStr = r.hmget("readStr", readId).get(readId)
val realend = if(end > refStr.length - 1) refStr.length - 1 else end
val refOneStr = refStr.substring(start, realend)
(readStr, refOneStr, refId, start, realend, readId)
})

But compiler gave me feedback like this:

Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:166)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:158)
at org.apache.spark.SparkContext.clean(SparkContext.scala:1242)
at org.apache.spark.rdd.RDD.map(RDD.scala:270)
at com.ynu.App$.main(App.scala:511)
at com.ynu.App.main(App.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:328)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.io.NotSerializableException: com.redis.RedisClient
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1183)
at java.io.ObjectOutputStream.defaultWriteFields(ObjectOutputStream.java:1547)
at java.io.ObjectOutputStream.writeSerialData(ObjectOutputStream.java:1508)
at java.io.ObjectOutputStream.writeOrdinaryObject(ObjectOutputStream.java:1431)
at java.io.ObjectOutputStream.writeObject0(ObjectOutputStream.java:1177)
at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java:347)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:42)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:73)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:164)
... 12 more

Could somebody tell me how to serialize the data get from Redis.Thanks a lot.

asked Jan 18 '15 at 2:18
Redis on Spark:Task not serializable
fanhk
173211
 

2 Answers

up vote10down voteaccepted

In Spark, the functions on RDDs (like map here) are serialized and send to the executors for processing. This implies that all elements contained within those operations should be serializable.

The Redis connection here is not serializable as it opens TCP connections to the target DB that are bound to the machine where it's created.

The solution is to create those connections on the executors, in the local execution context. There're few ways to do that. Two that pop to mind are:

  • rdd.mapPartitions: lets you process a whole partition at once, and therefore amortize the cost of creating connections)
  • Singleton connection managers: Create the connection once per executor

mapPartitions is easier as all it requires is a small change to the program structure:

val perhit = perhitFile.mapPartitions{partition =>
val r = new RedisClient("192.168.1.101", 6379) // create the connection in the context of the mapPartition operation
val res = partition.map{ x =>
...
val refStr = r.hmget(...) // use r to process the local data
}
r.close // take care of resources
res
}

A singleton connection manager can be modeled with an object that holds a lazy reference to a connection (note: a mutable ref will also work).

object RedisConnection extends Serializable {
lazy val conn: RedisClient = new RedisClient("192.168.1.101", 6379)
}

This object can then be used to instantiate 1 connection per worker JVM and is used as a Serializable object in an operation closure.

val perhit = perhitFile.map{x =>
val param = f(x)
val refStr = RedisConnection.conn.hmget(...) // use RedisConnection to get a connection to the local data
}
}

The advantage of using the singleton object is less overhead as connections are created only once by JVM (as opposed to 1 per RDD partition)

There're also some disadvantages:

  • cleanup of connections is tricky (shutdown hook/timers)
  • one must ensure thread-safety of shared resources

(*) code provided for illustration purposes. Not compiled or tested.

answered Jan 19 '15 at 12:00
Redis on Spark:Task not serializable
maasg
17.3k34166
 
    
Thank you for answering! I use this library github.com/debasishg/scala-redis. It haven't a method named "close", instead, it is "disconnect".I've no idea if it works. Could you tell me which library you are using now to deal with Redis data? – fanhk Jan 20 '15 at 4:33
    
Plus 1 for the Singleton solution. Can you give an example on how to manage the closing of the connection?– Sohaib Dec 4 '15 at 11:11
    
@Sohaib given this is a VM-bound object, you'll need to register a shutdown hook to cleanly close connections. – maasg Dec 11 '15 at 9:06
 

You're trying to serialize the client. You have one RedisClientr, that you're trying to use inside themap that will be run across different cluster nodes. Either get the data you want out of redis separately before doing a cluster task, or create the client individually for each cluster task inside yourmap block (perhaps by using mapPartitions rather than map, as creating a new redis client for each individual row is probably a bad idea).

answered Jan 18 '15 at 8:42
Redis on Spark:Task not serializable
lmm
10.6k11225
 
    
Thank you for answering, but could you tell me how to use mapPartitions in this situation? – fanhk Jan 18 '15 at 11:49
    
Call mapPartitions passing a block that accepts an iterable (as you can see from the signature ofmapPartitions), creates the RedisClient inside the block, and then uses it to map the Iterable as you were doing. The point is that the RedisClient gets created inside the processing for a single partition. What did you try and where did you get stuck? – lmm Jan 19 '15 at 14:57
    
Problem solved,thank you! – fanhk Jan 20 '15 at 4:42
上一篇:dom4j基本使用用法


下一篇:64位Windows操作系统中的注冊表