hive学习(四) hive的函数

1.内置运算符

1.1关系运算符

运算符

类型

说明

A = B

所有原始类型

如果A与B相等,返回TRUE,否则返回FALSE

A == B

失败,因为无效的语法。 SQL使用”=”,不使用”==”。

A <> B

所有原始类型

如果A不等于B返回TRUE,否则返回FALSE。如果A或B值为”NULL”,结果返回”NULL”。

A < B

所有原始类型

如果A小于B返回TRUE,否则返回FALSE。如果A或B值为”NULL”,结果返回”NULL”。

A <= B

所有原始类型

如果A小于等于B返回TRUE,否则返回FALSE。如果A或B值为”NULL”,结果返回”NULL”。

A > B

所有原始类型

如果A大于B返回TRUE,否则返回FALSE。如果A或B值为”NULL”,结果返回”NULL”。

A >= B

所有原始类型

如果A大于等于B返回TRUE,否则返回FALSE。如果A或B值为”NULL”,结果返回”NULL”。

A IS NULL

所有类型

如果A值为”NULL”,返回TRUE,否则返回FALSE

A IS NOT NULL

所有类型

如果A值不为”NULL”,返回TRUE,否则返回FALSE

A LIKE B

字符串

如 果A或B值为”NULL”,结果返回”NULL”。字符串A与B通过sql进行匹配,如果相符返回TRUE,不符返回FALSE。B字符串中 的”_”代表任一字符,”%”则代表多个任意字符。例如: (‘foobar’ like ‘foo’)返回FALSE,( ‘foobar’ like ‘foo_ _ _’或者 ‘foobar’ like ‘foo%’)则返回TURE

A RLIKE B

字符串

如 果A或B值为”NULL”,结果返回”NULL”。字符串A与B通过java进行匹配,如果相符返回TRUE,不符返回FALSE。例如:( ‘foobar’ rlike ‘foo’)返回FALSE,(’foobar’ rlike ‘^f.*r$’ )返回TRUE。

A REGEXP B

字符串

与RLIKE相同。

1.2算术运算符

运算符

类型

说明

A + B

所有数字类型

A和B相加。结果的与操作数值有共同类型。例如每一个整数是一个浮点数,浮点数包含整数。所以,一个浮点数和一个整数相加结果也是一个浮点数。

A – B

所有数字类型

A和B相减。结果的与操作数值有共同类型。

A * B

所有数字类型

A和B相乘,结果的与操作数值有共同类型。需要说明的是,如果乘法造成溢出,将选择更高的类型。

A / B

所有数字类型

A和B相除,结果是一个double(双精度)类型的结果。

A % B

所有数字类型

A除以B余数与操作数值有共同类型。

A & B

所有数字类型

运算符查看两个参数的二进制表示法的值,并执行按位”与”操作。两个表达式的一位均为1时,则结果的该位为 1。否则,结果的该位为 0。

A|B

所有数字类型

运算符查看两个参数的二进制表示法的值,并执行按位”或”操作。只要任一表达式的一位为 1,则结果的该位为 1。否则,结果的该位为 0。

A ^ B

所有数字类型

运算符查看两个参数的二进制表示法的值,并执行按位”异或”操作。当且仅当只有一个表达式的某位上为 1 时,结果的该位才为 1。否则结果的该位为 0。

~A

所有数字类型

对一个表达式执行按位”非”(取反)。

1.3逻辑运算符

运算符

类型

说明

A AND B

布尔值

A和B同时正确时,返回TRUE,否则FALSE。如果A或B值为NULL,返回NULL。

A && B

布尔值

与”A AND B”相同

A OR B

布尔值

A或B正确,或两者同时正确返返回TRUE,否则FALSE。如果A和B值同时为NULL,返回NULL。

A | B

布尔值

与”A OR B”相同

NOT A

布尔值

如果A为NULL或错误的时候返回TURE,否则返回FALSE。

! A

布尔值

与”NOT A”相同

1.4复杂类型函数

函数

类型

说明

map

(key1, value1, key2, value2, …)

通过指定的键/值对,创建一个map。

struct

(val1, val2, val3, …)

通过指定的字段值,创建一个结构。结构字段名称将COL1,COL2,…

array

(val1, val2, …)

通过指定的元素,创建一个数组。

1.5对复杂类型函数操作

函数

类型

说明

A[n]

A是一个数组,n为int型

返回数组A的第n个元素,第一个元素的索引为0。如果A数组为['foo','bar'],则A[0]返回’foo’和A[1]返回”bar”。

M[key]

M是Map<K, V>,关键K型

返回关键值对应的值,例如mapM为 \{‘f’ -> ‘foo’, ‘b’ -> ‘bar’, ‘all’ -> ‘foobar’\},则M['all'] 返回’foobar’。

S.x

S为struct

返回结构x字符串在结构S中的存储位置。如 foobar \{int foo, int bar\} foobar.foo的领域中存储的整数。

2.内置函数

2.1数学函数

返回类型

函数

说明

BIGINT

round(double a)

四舍五入

DOUBLE

round(double a, int d)

小数部分d位之后数字四舍五入,例如round(21.263,2),返回21.26

BIGINT

floor(double a)

对给定数据进行向下舍入最接近的整数。例如floor(21.2),返回21。

BIGINT

ceil(double a), ceiling(double a)

将参数向上舍入为最接近的整数。例如ceil(21.2),返回23.

double

rand(), rand(int seed)

返回大于或等于0且小于1的平均分布随机数(依重新计算而变)

double

exp(double a)

返回e的n次方

double

ln(double a)

返回给定数值的自然对数

double

log10(double a)

返回给定数值的以10为底自然对数

double

log2(double a)

返回给定数值的以2为底自然对数

double

log(double base, double a)

返回给定底数及指数返回自然对数

double

pow(double a, double p) power(double a, double p)

返回某数的乘幂

double

sqrt(double a)

返回数值的平方根

string

bin(BIGINT a)

返回二进制格式

string

hex(BIGINT a) hex(string a)

将整数或字符转换为十六进制格式

string

unhex(string a)

十六进制字符转换由数字表示的字符。

string

conv(BIGINT num, int from_base, int to_base)

将 指定数值,由原来的度量体系转换为指定的试题体系。例如CONV(‘a’,16,2),返回。参考:’1010′ http://dev.mysql.com/doc/refman/5.0/en/mathematical-functions.html#function_conv

double

abs(double a)

取绝对值

int double

pmod(int a, int b) pmod(double a, double b)

返回a除b的余数的绝对值

double

sin(double a)

返回给定角度的正弦值

double

asin(double a)

返回x的反正弦,即是X。如果X是在-1到1的正弦值,返回NULL。

double

cos(double a)

返回余弦

double

acos(double a)

返回X的反余弦,即余弦是X,,如果-1<= A <= 1,否则返回null.

int double

positive(int a) positive(double a)

返回A的值,例如positive(2),返回2。

int double

negative(int a) negative(double a)

返回A的相反数,例如negative(2),返回-2。

2.2收集函数

返回类型

函数

说明

int

size(Map<K.V>)

返回的map类型的元素的数量

int

size(Array<T>)

返回数组类型的元素数量

2.3类型转换函数

返回类型

函数

说明

指定 “type”

cast(expr as <type>)

类型转换。例如将字符”1″转换为整数:cast(’1′ as bigint),如果转换失败返回NULL。

2.4日期函数

返回类型

函数

说明

string

from_unixtime(bigint unixtime[, string format])

UNIX_TIMESTAMP参数表示返回一个值’YYYY- MM – DD HH:MM:SS’或YYYYMMDDHHMMSS.uuuuuu格式,这取决于是否是在一个字符串或数字语境中使用的功能。该值表示在当前的时区。

bigint

unix_timestamp()

如果不带参数的调用,返回一个Unix时间戳(从’1970- 01 – 0100:00:00′到现在的UTC秒数)为无符号整数。

bigint

unix_timestamp(string date)

指定日期参数调用UNIX_TIMESTAMP(),它返回参数值’1970- 01 – 0100:00:00′到指定日期的秒数。

bigint

unix_timestamp(string date, string pattern)

指定时间输入格式,返回到1970年秒数:unix_timestamp(’2009-03-20′, ‘yyyy-MM-dd’) = 1237532400

string

to_date(string timestamp)

返回时间中的年月日: to_date(“1970-01-01 00:00:00″) = “1970-01-01″

string

to_dates(string date)

给定一个日期date,返回一个天数(0年以来的天数)

int

year(string date)

返回指定时间的年份,范围在1000到9999,或为”零”日期的0。

int

month(string date)

返回指定时间的月份,范围为1至12月,或0一个月的一部分,如’0000-00-00′或’2008-00-00′的日期。

int

day(string date) dayofmonth(date)

返回指定时间的日期

int

hour(string date)

返回指定时间的小时,范围为0到23。

int

minute(string date)

返回指定时间的分钟,范围为0到59。

int

second(string date)

返回指定时间的秒,范围为0到59。

int

weekofyear(string date)

返回指定日期所在一年中的星期号,范围为0到53。

int

datediff(string enddate, string startdate)

两个时间参数的日期之差。

int

date_add(string startdate, int days)

给定时间,在此基础上加上指定的时间段。

int

date_sub(string startdate, int days)

给定时间,在此基础上减去指定的时间段。

2.5条件函数

返回类型

函数

说明

T

if(boolean testCondition, T valueTrue, T valueFalseOrNull)

判断是否满足条件,如果满足返回一个值,如果不满足则返回另一个值。

T

COALESCE(T v1, T v2, …)

返回一组数据中,第一个不为NULL的值,如果均为NULL,返回NULL。

T

CASE a WHEN b THEN c [WHEN d THEN e]* [ELSE f] END

当a=b时,返回c;当a=d时,返回e,否则返回f。

T

CASE WHEN a THEN b [WHEN c THEN d]* [ELSE e] END

当值为a时返回b,当值为c时返回d。否则返回e。

2.6字符函数

返回类型

函数

说明

int

length(string A)

返回字符串的长度

string

reverse(string A)

返回倒序字符串

string

concat(string A, string B…)

连接多个字符串,合并为一个字符串,可以接受任意数量的输入字符串

string

concat_ws(string SEP, string A, string B…)

链接多个字符串,字符串之间以指定的分隔符分开。

string

substr(string A, int start) substring(string A, int start)

从文本字符串中指定的起始位置后的字符。

string

substr(string A, int start, int len) substring(string A, int start, int len)

从文本字符串中指定的位置指定长度的字符。

string

upper(string A) ucase(string A)

将文本字符串转换成字母全部大写形式

string

lower(string A) lcase(string A)

将文本字符串转换成字母全部小写形式

string

trim(string A)

删除字符串两端的空格,字符之间的空格保留

string

ltrim(string A)

删除字符串左边的空格,其他的空格保留

string

rtrim(string A)

删除字符串右边的空格,其他的空格保留

string

regexp_replace(string A, string B, string C)

字符串A中的B字符被C字符替代

string

regexp_extract(string subject, string pattern, int index)

通过下标返回正则表达式指定的部分。regexp_extract(‘foothebar’, ‘foo(.*?)(bar)’, 2) returns ‘bar.’

string

parse_url(string urlString, string partToExtract [, string keyToExtract])

返回URL指定的部分。parse_url(‘http://facebook.com/path1/p.php?k1=v1&k2=v2#Ref1′, ‘HOST’) 返回:’facebook.com’

string

get_json_object(string json_string, string path)

select a.timestamp, get_json_object(a.appevents, ‘$.eventid’), get_json_object(a.appenvets, ‘$.eventname’) from log a;

string

space(int n)

返回指定数量的空格

string

repeat(string str, int n)

重复N次字符串

int

ascii(string str)

返回字符串中首字符的数字值

string

lpad(string str, int len, string pad)

返回指定长度的字符串,给定字符串长度小于指定长度时,由指定字符从左侧填补。

string

rpad(string str, int len, string pad)

返回指定长度的字符串,给定字符串长度小于指定长度时,由指定字符从右侧填补。

array

split(string str, string pat)

将字符串转换为数组。

int

find_in_set(string str, string strList)

返回字符串str第一次在strlist出现的位置。如果任一参数为NULL,返回NULL;如果第一个参数包含逗号,返回0。

array<array<string>>

sentences(string str, string lang, string locale)

将字符串中内容按语句分组,每个单词间以逗号分隔,最后返回数组。 例如sentences(‘Hello there! How are you?’) 返回:( (“Hello”, “there”), (“How”, “are”, “you”) )

array<struct<string,double>>

ngrams(array<array<string>>, int N, int K, int pf)

SELECT ngrams(sentences(lower(tweet)), 2, 100 [, 1000]) FROM twitter;

array<struct<string,double>>

context_ngrams(array<array<string>>, array<string>, int K, int pf)

SELECT context_ngrams(sentences(lower(tweet)), array(null,null), 100, [, 1000]) FROM twitter;

3.内置的聚合函数(UDAF)

返回类型

函数

说明

bigint

count(*) , count(expr), count(DISTINCT expr[, expr_., expr_.])

返回记录条数。

double

sum(col), sum(DISTINCT col)

求和

double

avg(col), avg(DISTINCT col)

求平均值

double

min(col)

返回指定列中最小值

double

max(col)

返回指定列中最大值

double

var_pop(col)

返回指定列的方差

double

var_samp(col)

返回指定列的样本方差

double

stddev_pop(col)

返回指定列的偏差

double

stddev_samp(col)

返回指定列的样本偏差

double

covar_pop(col1, col2)

两列数值协方差

double

covar_samp(col1, col2)

两列数值样本协方差

double

corr(col1, col2)

返回两列数值的相关系数

double

percentile(col, p)

返回数值区域的百分比数值点。0<=P<=1,否则返回NULL,不支持浮点型数值。

array<double>

percentile(col, array(p~1,,\ [, p,,2,,]…))

返回数值区域的一组百分比值分别对应的数值点。0<=P<=1,否则返回NULL,不支持浮点型数值。

double

percentile_approx(col, p[, B])

Returns an approximate p^th^ percentile of a numeric column (including floating point types) in the group. The B parameter controls approximation accuracy at the cost of memory. Higher values yield better approximations, and the default is 10,000. When the number of distinct values in col is smaller than B, this gives an exact percentile value.

array<double>

percentile_approx(col, array(p~1,, [, p,,2_]…) [, B])

Same as above, but accepts and returns an array of percentile values instead of a single one.

array<struct\{‘x’,'y’\}>

histogram_numeric(col, b)

Computes a histogram of a numeric column in the group using b non-uniformly spaced bins. The output is an array of size b of double-valued (x,y) coordinates that represent the bin centers and heights

array

collect_set(col)

返回无重复记录

4.内置表生成函数(UDTF)

返回类型

函数

说明

数组

explode(array<TYPE> a)

数组一条记录中有多个参数,将参数拆分,每个参数生成一列。

json_tuple

get_json_object 语句:select a.timestamp, get_json_object(a.appevents, ‘$.eventid’), get_json_object(a.appenvets, ‘$.eventname’) from log a; json_tuple语句: select a.timestamp, b.* from log a lateral view json_tuple(a.appevent, ‘eventid’, ‘eventname’) b as f1, f2

5.自定义函数

自定义函数包括三种UDF、UDAF、UDTF

UDF(User-Defined-Function) 一进一出

UDAF(User- Defined Aggregation Funcation) 聚集函数,多进一出。Count/max/min

UDTF(User-Defined Table-Generating Functions)  一进多出,如lateral view explore()

使用方式 :在HIVE会话中add 自定义函数的jar文件,然后创建function继而使用函数


 

5.1 UDF 开发

1、UDF函数可以直接应用于select语句,对查询结构做格式化处理后,再输出内容。

2、编写UDF函数的时候需要注意一下几点:

a)自定义UDF需要继承org.apache.hadoop.hive.ql.UDF。

b)需要实现evaluate函数,evaluate函数支持重载。

3、步骤

a)把程序打包放到目标机器上去;

b)进入hive客户端,添加jar包:

hive>add jar /run/jar/udf_test.jar;

c)创建临时函数:

hive>CREATE TEMPORARY FUNCTION add_example AS 'hive.udf.Add';

d)查询HQL语句:

    SELECT add_example(8, 9) FROM scores;

    SELECT add_example(scores.math, scores.art) FROM scores;

    SELECT add_example(6, 7, 8, 6.8) FROM scores;

e)销毁临时函数:

hive> DROP TEMPORARY FUNCTION add_example;

数据脱敏demo

代码:

package com.hadoop.hive;
import <u>org.apache.hadoop.hive.ql.exec.</u><u>UDF</u>;
import org.apache.hadoop.io.Text; public class TuoMin extends <u>UDF</u> {
public Text evaluate(final Text s){
if(s==null){
return null;
}
String str=s.toString().substring(0,3)+"***";
return new Text(str);
}
}

导出为jar包上传到服务器

hive学习(四) hive的函数

从hive将jar包上传到hdfs

hive> add jar /root/TuoMin.jar;
Added [/root/TuoMin.jar] to class path
Added resources: [/root/TuoMin.jar]

创建临时函数

hive> create TEMPORARY FUNCTION tm AS 'com.hadoop.hive.TuoMin';
OK
Time taken: 0.075 seconds

5.查看输出

`hive> select tm(name) from psn4;`
OK
小明1***
小明2***
小明3***
小明4***
小明5***
小明6***
小明7***
小明8***
小明9***
小明1***
小明2***
小明3***
小明4***
小明5***
小明6***
小明7***
小明8***
小明9***
Time taken: 0.815 seconds, Fetched: 18 row(s)

注意:tm是这个临时函数的别名,既然是临时的所以当退出hive后这个临时函数就失效了,这种脱敏操作就不生效。

5.2 UDAF 自定义集函数

多行进一行出,如sum()、min(),用在group  by时

1.必须继承

}org.apache.hadoop.hive.ql.exec.UDAF(函数类继承)

} org.apache.hadoop.hive.ql.exec.UDAFEvaluator(内部类Evaluator实现UDAFEvaluator接口)

2.Evaluator需要实现 init、iterate、terminatePartial、merge、terminate这几个函数

} init():类似于构造函数,用于UDAF的初始化

} iterate():接收传入的参数,并进行内部的轮转,返回boolean

}
terminatePartial():无参数,其为iterate函数轮转结束后,返回轮转数据,类似于hadoop的Combiner

} merge():接收terminatePartial的返回结果,进行数据merge操作,其返回类型为boolean

} terminate():返回最终的聚集函数结果

}开发一个功能同:

}Oracle的wm_concat()函数

}Mysql的group_concat()

Hive UDF的数据类型:

hive学习(四) hive的函数

6.beeline使用

6.1beeline客户端使用

在需要被连接的节点上开启 hiveserver2
[root@node02 ~]# nohup hiveserver2 &
[root@node02 ~]# ss -lntup|grep 10000
tcp LISTEN 0 50 :::10000 :::* users:(("java",pid=3305,fd=496))
[root@node04 ~]# beeline -u jdbc:hive2://node02:10000/default -n root -p hive
Beeline version 3.1.1 by Apache Hive
0: jdbc:hive2://node02:10000/default> show tables;
INFO : OK
INFO : Concurrency mode is disabled, not creating a lock manager
+-----------+
| tab_name |
+-----------+
| psn2 |
| psn3 |
| psn4 |
| users |
+-----------+
4 rows selected (193.57 seconds)
0: jdbc:hive2://node02:10000/default>

6.2jdbc客户端使用beeline代码

package com.hadoop.hive;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement; public class HiveJdbcClient { private static String driverName = "org.apache.hive.jdbc.HiveDriver"; public static void main(String[] args) throws SQLException {
try {
Class.forName(driverName);
} catch (ClassNotFoundException e) {
e.printStackTrace();
} Connection conn = DriverManager.getConnection("jdbc:hive2://node02:10000/default", "root", "hive");
Statement stmt = conn.createStatement();
String sql = "select * from psn3 limit 5";
ResultSet res = stmt.executeQuery(sql);
while (res.next()) {
System.out.println(res.getString(1) + "-" + res.getString("name"));
}
}
}

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABWAAAANaCAYAAAAHxuUsAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAPLuSURBVHhe7P3ptzRXfSd6nv4D+nW/7tXvfNddfddtr1p9s3uxutu+Xbdf3L5DW3eVb93ysq1ylosqPJRl++ByIYwlwOAhZVt4AjwKjks2AmOOBcZHCIQBIYwER4+GB4QGhNARgwY0D7tjR0Zk7tgZmRF5hsgzfD5r/VacjB0Re0dk5PMov9pPnK1wDjz0jecatfvxO6oWAAAAAIDNEcACAAAAAJyQcx/AvvDCC2vVEIbqBwAAAADYLAFsVkMYqh8AAAAAYLMEsFkNYah+AAAAAIDNEsBmNYSh+gEAAAAANksAm9UQhuoHAAAAANgsAWxWfe3vbIft7e0w2Tuo1vS3Tj9H9cTkqnD11hXh6tFN4YlqHXOXJ6OwtbUVxrvViiPbDePieFujSfV6s9Y5v93xVhhNLlevAAAAADgOAtis+jjYm4Ttnf2Ywp76ADYqQ1gB7FIxpDy+ADbaDeNTEsBGx39+AAAAAPQlgM1qLccQwF4fZ6cWdePuo+HW0fTnq7euC5eq9ujSuF5f1UKYmu5b11Xh1moyYxrA1se6MQnkOo9/+abZOMvjTq6b/1z2cXu4cdYeqzn+PuLsyzhTs6zRJExGo5BOxpyMkvatcSiHf3kSRuX2o+ms07h+d9zcpocyoJxUx2rbd3bMaS3MEq3HUdV4dzGAbR1/Yln7dH1xLSbpGJrXpkvX+dWzZGPl55a+L2Vbei3qc8zOv332bzUzeM2xAwAAAJx1Atis1nIsM2Cn4eX1o+uagWkSoDZNw9brJ482XjdC091pQFqHrPMANt+3TbZNFb7O96nD1ipkrdrTQHf1+BeVIV8yRXMaCM6DuhhCNoLBGAJm4V+5exkOTsPFdWZ95v3F183+dhuBZRzP/NgxWExDxcVHEKwcf6FPeyM0Lc95McRdpvP8Kr3Xx/ElFzcPy8v+FkJYASwAAABwMQlgs1rLcQawjVA0C0GrQDWtZkCah53xmPN1dQB7qVimQenMiuOns2dnyu2nAew0bG3uW1drXwsWZ4s2xLCxJUndHVdBXmyv90+CwRgCrhPANrYtjtMIHPMZnkXNts+3jdIx9Rn/qvZCM/CdOtbzq8Tt2tYXO4RxY1ZuEqK2XJtp9Q+IAQAAAM4zAWxWaznGALYZViYB7MIM07YZqqtnmzZD0uzxAB3H7xfArv/IgbnTHsDG8DEJHAuN7QcJYJv9R8d3fnNxu/YANjlGco2nOt4/AAAAgAtOAJvVWo4xgG2EmGXAWYWqSdhZqmarzgLYKjC9enx79TpaFqJW26aBbdfxq4B23l/7Iwga/VfH6DcDtth84bfvx9BzPutzMYBMQr/eAez0mG0zM1cGlOnxo/g6Gdv0uM1jlo9USPZZOf5Cd3vzeNFklJ/HIc8vsSqArcfUFgYvvn8t4nsTx5edBwAAAMB5J4DNqo/9ne2wvZ3VZK9q7dbsp54BWwebWUBaaPySrPFNVYgaf65DzzpYTaqatTqb/VrPYq3C0WlNQ9TO49cha71PHtrOQtmk8lmzHabPOZ1XIzCsQs+F9nR9XFGFfDEMjGHibLtSe0BZbzfbtg4Ki6pDxXSb+AzT8Tg7drJPWePxtK86bFw2/lpHeww96z7rWgw8D3t+9X55tQe5zdmvc/n7l+8//WVei8cEAAAAOO8EsFkNodlPHcBWL8+AMrBdM2Dl8NpmnZ4tMeQ96+cAAAAAcDgC2KyGkPYzn1kaK51Veoo0ZsCe4nGeQ42Zpf75PgAAAMCZI4DNaghD9QMAAAAAbJYANqshDNUPAAAAALBZAtishjBUPwAAAADAZglgsxrCUP0AAAAAAJslgM1qCEP1AwAAAABslgA2qyEM1Q8AAAAAsFkC2KyGMFQ/AAAAAMBmCWCz6mtvsh22t6c12Tuo1vazTj8AAAAAwNklgM2qj/2dNHTdDzvb22Fnv3rZQ99+AAAAAICzTQCb1WEc7E0EsAAAAADAAgFsVuvbDzuTvernfg7XDwAAAABw1ghgs1rLwV6YrPn4gWjtfgAAAACAM0kAm1Vf8bED29uTsObv3yqt0w8AAAAAcHYJYLPqI/4Sru01HzuQ6tsPAAAAAHC2CWCz6lQ9dmA7K7+ECwAAAADICWCzGsJQ/QAAAAAAmyWAzWoIQ/UDAAAAAGyWADarIQzVDwAAAACwWQLYrIYwVD8AAAAAwGYJYLMawlD9AAAAAACbJYDNaghD9QMAAAAAbJYANqshDNUPAAAAALBZAtishjBUPwAAAADAZglgsxrCUP0AAAAAAJslgM2qr4O9Sdje3p7WZK9a2886/QAAAAAAZ5cANqs+9neaoWsMYyd7B9Wrbn37AQAAAADONgFsVochgAUAAAAA2ghgs+pvP+x4BAEAAAAAsIIANqvDiI8kMAMWAAAAAMgJYLM6nP2ws8Ys2MP3AwAAAACcJQLYrPrYm2yHnf3qRaH8pVzpig59+wEAAAAAzjYBbFb9JM9/9QxYAAAAAGAJAWxWQxiqHwAAAABgswSwWQ1hqH4AAAAAgM0SwGY1hKH6AQAAAAA2SwCb1RCG6gcAAAAA2CwBbFZDGKofAAAAAGCzBLBZDWGofgAAAACAzRLAZjWEofoBAAAAADZLAJvVcXjhxZfCwbeeCrfdcSl8ZO/z5TK+juvL9mPqBwAAAAA43QSwWR3V8y++FL5w99fCXfc/Eh79ztPh6ZdeLZd33f9wuT62H0c/AAAAAMDpJ4DNaj37YWd7O2zv7FevQ/j6wXfD5+95KDzx/CtVvRoOqp/j+oe/+e0l/dwebty6Ilw/ebR6fbo8MbkqXD2+vXp1SJcnYbQ1DrvVy/Pi8mQUtra2yhpNLldr17M7nu5f1mhSHnN8zi5UPMfDXh8AAACAs0oAm9U69ibbYWdvL0ySAPbvbvtyuPvR74YHn345PPT0S8VyXvuPPlm2r9vPaXBpfMXRA9hzLoamhwkYy/A1SVvrQPcsBbCT0fkL1gEAAACOgwA2q772d7bDZO8ghINmAPvnf/uZ8LlHnw3vfNeNCxXXx/a8n3J26dYV00pDzss3hevL9deFG2MAOropPFGvS38u6sbdR8Oto+nPcftL1SGm0rai4r5VSz3ztu67DFrL11eFW8ssMWlPa40wdjJKZncWtRBS7o6XtqczQ8v16bajSb3RfF293ZoaYxyNwqg+diVtH+/uhnG5XXObQwWwcVZwj6S1eQ3nYecsrB2n16B/e6mcmVy3FZWdV5TP0J0U16g81XzfqtJTqscQa9n1Oez5zVXvyVY1LgAAAIBTQgCbVR8He5P5YweyAPZvPnlXuONrT4R7n3gu3FPVvd+aLuP62L6sn9ZZprvXlYHnjbtVexmeTkPRuG726ILRdVVgWge6WYCaHHcasjZD2nnwOl2fP3KgdWyHsTteDOF2dxuBWgzj8gCvsU8MXNMNOvbvkh+/DBuTEDIeb97eHr5GC+Pso+16ZJr9F+L5J/1PQ8pmaJlu39U+C1Mr5fbJ8dtn6Db36TMDNu+3dtTzmxLAAgAAAKeTADarPuLs1+347Nekytmwha9949vhU3d9NTzwneeKej58tVxO65N3PVC2L+tneQA7DUXn7S0BbOPZsdMZr+W6ZP+5dP+ptlA2daIBbMssymaAGsO1eQCXB4bd+3epw7u6kjAxHjsPW7OAsLYsYFypK4CN/beczO54fg1iv41NsmOubF8yg3V+DYpr03KuuUMHsMdwfgAAAACnmQA2q7VlM2Cfee6FcNsX7w//+OWvhnse+VZ4+Mlnwz1ffyJ85ssPlOtj+7J+jhLApmHqoQPYFQHryQWwMfxsBqoLgVthtq7YvzH7tef+a4l91KFjWwDbtq7QGjB2WXKsmWMIKFe3dwWsAlgAAACAoxDAZrW2LICNvvfci+GRb34n/P2nvxQ+8NHPlsuvF6/j+mhZP0cJYBsha7nPIR5BsCJgbT6SIAl415WHZ3kAGV9vtc1gnQaBrbNf++7fmNk5t3DMGMAmB8jb80cU1FYHsMv7j8dr7jfdth7Cwvhie9L/0QLYtv6busYXNcYYr1/LeS67Pkc9v1LZZ/v7AgAAALBJAtis1pE+iqB+BEEfi/3UIWpdVXia/JKt+OzXW8vgNAafN1Xbx+3qMDY9Rh2+1rJfwpXPiC0D23l7e7CajbHxi7zW0BKexYBt/k/fR2E8nr5uhG6Fcrt8ZaHf/ssD0PgM0vn+LdtUoe6sfTxOAsL6uHnl/SzvP8rH0Bh73n/Snp57ua4OIouK17mrvdZ1DVaOL0qO29y3x/U5wvnVylB8ybUFAAAA2CQBbFZDON5+6gC2ennKxUBtYfbimdOcocmmxZA3n0ULAAAAcDoIYLMawrH1k86QLSt/1utpkM2APOPB5XSm5fk4FwAAAABOngA2qyEM1Q8AAAAAsFkC2KyGMFQ/AAAAAMBmCWCzGsJQ/QAAAAAAmyWAzWoIQ/UDAAAAAGyWADarIQzVDwAAAACwWQLYrIYwVD8AAAAAwGYJYLMawlD9AAAAAACbJYDNqpeDvTDZ3g7bs9oJ+1VTH+393B5u3LoiXD95tHp9ujwxuSpcPb69enVIlydhtDUOu9XL8+LyZBS2trbKGk0uV2t7Kq/JdN95He4a7Y4P0f+R7IZxOd5RaHS7O56ex2hSrQAAAAC4uASwWfUSA9iddSLXpt79nCKXxlccPYA952IQe6gANAaW4yRyLQPMMxJU1wFyMv7dcXEdRucvaAcAAAA4DAFsVr0ccwBbzi7dumJaach5+aZwfbn+unBjDEBHN4Un6nXpz0XduPtouHU0/Tluf6k6xFTaVlTct2qpZ97WfZdBa/n6qnBrmSUm7WmtEcZORvXMzmkthJT1jMmW9jirs7E+3baeYbli/74aYxzFALE5ezNtH+9WMz+zbY4tgC2kx6r7jq/ns23nAeeqGbi9rl8+C3fJubf2H/ctxj6pA9f8dbTi/amPNx6n22Thbef7W8/EjTUKk8l0+9l2Rzm/mSWzfQEAAAA6CGCz6uVEHkGwZJbp7nVl4HnjbtVehqfTUDSumz26YHRdFZjWgW4WoCbHnYaszZB2HrxO1+ePHGgd22HsjhcDtN3dRtgVA7E0j4yhWGOfPLDs2L9LfvwytExCuni8eXt7+BotjLOv/HyihXOsQsi63+J1vsuy/ruu32TUDBXj9gvnt6z/KnCNr2Mf8drFl80Atvv9zQPl5nhX7994XYWt6f5HOr8ZASwAAABwOALYrA5lfydsrzEjdlk/ywPYaSg6b28JYBvPjp3OeC3XJfvPpftPtYWyqRMNYPMZikUthl/zgC4P1Lr375LOoIyVhIfx2G1hXb6usBAc9hWPlw84X9d23TLL+19x/Vqu3cI1iJb1H/cvx9kMphsBbMf7E8fdOP28r1X7t7w/jetw1PMDAAAAOCIBbFaHsx92JnvVz92W9XOUADYNUw8dwK4IWE8ugI3B3eIMxUYgV5itK/ZvhpX99l9L7KMO9VoCvtZ1hUbwt46Fc2o5Vo+AcFX/K69fy7ksWNZ/vBb18ZKZqvMAtvv9yV83++rYv+29yPc/yvkBAAAAHJEANqs+9ibbYbJ3UL2KTySYbHwGbCNkLfc5xCMIVgSszUcSJAHvuvKgKw/Q4uutthms0yCtdfZr3/3bZj4WFo5ZjDENKfP2/BEFtVUB6Kr+8/6m264/Q7Oz/7brV4jn0xk+Lus/Xu/Fiz0PYHu8PysD2B775+fUfGTEEc+vFt+j+P61vO8AAAAAqwhgs+orhrCzZ8CuMfs1WuynDlHrqsLT5JdsxWe/3loGpzH4vKnaPm5Xh7HpMerwtZb9Eq58RmwZ2M7b24PVbIyNX+S1hpagKwZw838aPgrj8fR1nuuV27WEff32XxXA1vvWlW1ThX6z9vE4mVVZHzevvJ8l/efHrmo+9vbjd7W3neey6xctvwYr+m+MvQpBG+umx1j1/qRt5THroLOo+j7pfH+zazgaLQbRhzq/RBm6t1xTAAAAgC4C2KyGcLz91AFs9fKUi2Fa52zEU2+33z9rZyOO/x6LIe3izGEAAACAPgSwWQ3h2PpJZ8iWlT/r9TTIZhie8eByOhPyfJzLedKY4ep9AQAAAE4RAWxWQxiqHwAAAABgswSwWQ1hqH4AAAAAgM0SwGY1hKH6AQAAAAA2SwCb1RCG6gcAAAAA2CwBbFZDGKofAAAAAGCzBLBZDWGofgAAAACAzRLAZjWEofoBAAAAADZLAJvVWvZ3wvb2dlU7Yb9a3aW9n9vDjVtXhOsnj1avT5cnJleFq8e3V68O6fIkjLbGYbd6eV5cnozC1tZWWaPJ5WptT7vj2b6zGk2qxmEcafyVySgZ/3gcxgOfAwAAAMBpJYDNqq+DvclaoWtqnX5Oi0vjK44ewJ5zMcg8TICZ77c7PnwQehSrxj8ZLQ/O28a/boi86vgAAAAAZ5kANqteDvbCZLJXvVhf3k85u3TrimmlIeflm8L15frrwo0xAB3dFJ6o16U/F3Xj7qPh1tH057j9peoQU2lbUXHfqqWeeVv3XQat5eurwq1lppa0p7VGGNuYHdk2yzKbBboQ5qXr023rkG/F/n01xjgahVEWIKbt493dMC63a25zXAFssSKMxkkcWc4cnvffFm4uG3889nTM5cvZ9WwbZ+v4876rag6v47xXjb/H8aeqa741Coe4xAAAAAAbI4DNqpf9nTDZKWr2+IFJ2Duo2npY1k/rLNPd68rA88bdqr0MT6ehaFw3e3TB6LoqMK0D3SxATY47DVmbIe08eJ2uzx850Dq2w9gdL4Z1u7uN2Y8xTFwZ8MXANd2gY/8u+fHzGZzxePP29vA16gwil8j3y8c/GTVDx7h92n/X+GN743q0vQeFVePvmqHaDICb16Zr/FH3DFgBLAAAAHA2CWCz6mP6+IHtMKlT1zVnxC7rZ3kAOw1F5+0tAWzj2bHTGa/lumT/uXT/qbZQNnWiAWzLLMhmgBrDt3lAlwd63ft3qcO9upIwMB47D1tjAJyvK6wKMFcpA8mk/8YxlswQbYxx1fgLQwSwqUbA2mv86x0fAAAA4CwRwGbVRxnAZoHr3qT/LNhl/RwlgE3D1EMHsCsC1pMLYGN4uDhDMg9QZ+ti+NlME3vtv5Y0YG0LYNvWFVYFmKs09ot95+FqS18rpeMvLFyPhfdgatX41wtI43tSb99v/AJYAAAA4LwSwGbV195kO+zMfgPXftjZ8AzYRsha7nOIRxCsCFibjyRIAt515eFfHmZWMyYXA9RpkNc6+7Xv/i0zL6OFY8YAMzlA3r7sl0ytDmCX95/vF1+n/cf+lh+3e/yN41fXp+14qwPYpI94/DRgzR8LEPtYY/zR8uNXynXt1x0AAADgNBPAZtXfftiZPQM2DWO7LfZTh6h1VeFp8ku24rNfby2D0xh83lRtH7erw9j0GHX4Wst+CVc+I7YMbOft7cFqNsbGL/Jaw+7i7MsycCzDyVijMB5PX+chah5M1vrtvyqArfetK9umCi1n7eNxMquzPm5eeT9L+q+DxVhJuFiOKX89O3as+XHWG/8oTCbTPqfvQ8/xp+NstLXtnwWyhc4xLj3+VBl6t6wHAAAAOO0EsFkN4Xj7qQPY6uUpt2qW5dmxu/5jATiCGPIuhroAAAAAZ4EANqshHFs/6QzZsvJnvZ4G2QzJMx5cTmdino9zAQAAAODkCWCzGsJQ/QAAAAAAmyWAzWoIQ/UDAAAAAGyWADarIQzVDwAAAACwWQLYrIYwVD8AAAAAwGYJYLMawlD9AAAAAACbJYDNaghD9QMAAAAAbJYANqshDNUPAAAAALBZAtis+tibbIft7WZN9g6q1m7t/dwebty6Ilw/ebR6fbo8MbkqXD2+vXp1SJcnYbQ1DrvVy/Pi8mQUtra2yhpNLldr1zMZTfcvazwO49GkapnaHSftadvueL6+rOb1TcfWqOz4Z0G8Boe9vgAAAACbIoDNqo+9yU7Yr36ODvYmxxDAnm6XxlccPYA952LYeZiAMN+vDFuTgLR8PZ7HqtNQtRm07o5HYVnXC+OKQfgpC2Ano/MXzAMAAABEAtisDiMPZLvk/ZSzS7eumFYacl6+KVxfrr8u3BgD0NFN4Yl6XfpzUTfuPhpuHU1/jttfqg4xlbYVFfetWuqZt3XfZdBavr4q3Fpmdkl7WmuEsY3ZnUUthJTZLM6FMDJdn25bh4gr9u+rMcbRaCGgTNvHu7thXG7X3Oa4AtiGGJYm4WttMbTtE8AW486D13JWcn1exevZtWweL5+BOymu0aw9OUbdXptet2LbSfoerdi3qvSU4/jr9cuuU/Mem4e59b7jcdp/W9hbvafZeQMAAAAclQA2q7Ud7IXJzjrx6/IZsK2zTHevKwPPG3er9jI8nYaicd3s0QWj66rAtA50swA1Oe40ZG2GtPPgdbo+f+RA69gOY3e8GKLt7jYCsRim5QFcY58YEqYbdOzfZTHM3FoIEeft7eFrtDDONTQCxPTYbdcrytZ3BbCtx66VIWi1fxWINi5v6wzceX+NMLZQti+EsEnoWfbRDEH7zIBddn2b708h3h9J/9PxNkPZxeMIYAEAAICTIYDNal3x8QNr5q9L+1kewE5D0Xl7SwDbeHbsdMZruS7Zfy7df6otlE2daADbMguyGaDGcGweoOWBX/f+Xerwra4sLMxDyyzgqy0LCNeVBphLj7lmADvdtjjPlnGXZtcwP86KfaKWa59fw7ZAPI4pXXfoADb23/Jmp9cj76v1HgQAAAA4IQLYrNa17uMHomX9HCWATcPUQwewKwLWkwtgY/jZDP0WArPCbF0MP5tpWq/915IGrG0BbNu6QmtAeCjxnKpAcmnAmM9SXX4Neo0rnnMVnja76whgO9tbAvNC/h4JYAEAAIDzSgCb1VoO8fiBaFk/RwlgGyFruc8hHkGwImBtPpIgCXjXlYdfeZgZXy+EgNE06Gud/dp3/2xmZm3hmFnIm7fnjyiorQ46l/Uf17ecU9J/7C89buwn73/dADYNPMvjzcY1HWe6fd5/vU19/MX2pvIRBNl488C1cY3LMHjxfVp2fRcD3mJ8SX/ptSi1BbBln+3vKwAAAMBRCGCzWsdhHj8QLfZTh6h1VeFp8ku24rNfby2D0xh83lRtH7erw9j0GHX4Wst+CVc+I7YMbOft7cFqNsbGL/JaQ0v4NQ0AYzgZaxTG4+nrRmhWKLfLVxb67b8sAK0Cwtn+LdtUoe6sfTxOAr76uHnl/Szrv23/PFDMxpiGhHVw2FLx/JvXJq3pONL28nolx0vfp/wa5W/DqmsYA9L6PalraQCa7dt+fbJt8venqHp8fc+vDNUX3hsAAACAoxPAZjWE4+2nDmCrl6dcDMQWwrczZ7fzn90ftzRIjNfvLF3HxRmqp00MeU/7GAEAAICzSgCb1RCOrZ90hmxZ+bNeT4NsBuMZ/yfe05mSA59LOcOzDgjr63k2ZmsunbkLAAAAcEEIYLMawlD9AAAAAACbJYDNaghD9QMAAAAAbJYANqshDNUPAAAAALBZAtishjBUPwAAAADAZglgsxrCUP0AAAAAAJslgM1qCEP1AwAAAABslgA2qyEM1Q8AAAAAsFkC2Kz62t/ZDtvbVe3sV2v7ae/n9nDj1hXh+smj1evT5YnJVeHq8e3Vq0O6PAmjrXHYrV6eF5cno7C1tVXWaHK5WrueyWi6f1njcRiPJlULAAAAAGeZADarPg72Jo3QNYax62Swffs5TS6Nrzh6AHvOxSD2MAFsvt/ueCtsZQHsZHS04Pqo+5+00z4+AAAAgMMSwGbVRwxg08A1vp7sHVSvuuX9lLNLt66YVhpyXr4pXF+uvy7cGAPQ0U3hiXpd+nNRN+4+Gm4dTX+O21+qDjGVthUV961a6pm3dd9l0Fq+vircWmaCSXtaa4SxjdmdbbNEd8dL28swMl2fbluHlCv276sxxtEojBYC0Hn7eHc3jMvtmtscVwDbUM4anvc9H0PVHq06/z7759vU51WvL65Heb5x9vKsryQwXbZ/oZ4dPB6nY1yxb1WN8ZWqa741Coe4xAAAAAAbI4DNqp/9sFM/fiDWZK9a38+yflpnme5eVwaeN+5W7WV4Og1F47rZowtG11WBaR3oZgFqctxpyNoMaefB63R9/siB1rEdxu54MWzc3W3MfoxhZxrALQSUMQRMN+jYv0vXDNR4vHl7e/gaHTaAjZoB8OKxV84Q7XH+q/afjJqhZhmaZiFsebwyfJ0eJ25T97Fy/0L5Ogld265T9wxYASwAAABwNglgs+plfyebAbsT1pgAu7Sf5QHsNBSdt7cEsI1nx05nvJbrkv3n0v2n2kLZ1IkGsC2zIJsBYgzf5gFdHvh179+lDvfqSsLAeOw8EI1B5DEHsKk8wIxWBpQ9zn/p/i37TqvaPj3/JPiOYyx/7Nq/3GQe1pZa7oHuABYAAADgbBLAZtXH/s6kGbju7xzpEQS1owSwaZh66AB2RcB6cgFsDD8XZ1DmAeJsXRICTvXbfy1pwNoWwLatK8R+jyOAnZ5TM5BcHlD2O/+V+7ecy0xXANu1f2FhPAJYAAAA4AIRwGbVR/4M2NMQwDZC1nKfQzyCYEXA2nwkQRLwrisP3/Iws5pRuRigToO+1tmvfffPZmbWFo6Zhbx5e9svyYpWB7DL+o/rW84pO4HGGOL42maoRkvOf+n+5csVz81Nj59clzRUXbl/oV8Au3x8pXJd+3UHAAAAOM0EsFn1kz0DdnunWNPfYj91iFpXFZ4mv2QrPvv11jI4jcHnTdX2cbs6jE2PUYevteyXcOUzYsvAdt7eHqxmY2z8Iq81tIRvMaCb/9P1URiPp6/zELHcLl9Z6Lf/qgC23reubJsq1Jy1j8fJrM/6uHnl/awKYPN9s0A2qgPIsprH6HX+K/aPWq9Bet7xYNUx4vtX91n3sewapmMrt03G0bgPOsY3/WVsi+sBAAAATjsBbFZDON5+6gC2ennKxUBu1WzJs2G385/dc5xiSN0SSgMAAACcAQLYrIZwbP2kM2TLyp/1ehpkMzzPeHA5nYl5Ps4FAAAAgJMngM1qCEP1AwAAAABslgA2qyEM1Q8AAAAAsFkC2KyGMFQ/AAAAAMBmCWCzGsJQ/QAAAAAAmyWAzWoIQ/UDAAAAAGyWADarIQzVDwAAAACwWQLYrIYwVD8AAAAAwGYJYLPqa39nO2xvV7WzX63tZ51+AAAAAICzSwCbVS/7O2F7sle9mIaxk72D6lW33v0AAAAAAGeaADarPg72JqE56XU/7CSBbJe+/QAAAAAAZ5sANqteshmwMZDd3t4JfR9E0LsfAAAAAOBME8Bm1dc0dK2eATvZC3sTASwAAAAA0CSAzepwPIIAAAAAAFgkgM3qMOIv4Wo+E3a1w/YDAAAAAJwtAtiseonPgK0fPxBrnfS10LsfAAAAAOBME8BmNYSh+gEAAAAANksAm9UQhuoHAAAAANgsAWxWQxiqHwAAAABgswSwWQ1hqH4AAAAAgM0SwGY1hKH6AQAAAAA2SwCb1RCG6gcAAAAA2CwBbFZDGKofAAAAAGCzBLBZDWGofgAAAACAzRLAZjWEofoBAAAAADZLAJtVbX9nO2xvb4fJ3kG1pulgb1K2l7WzX63tJ+3nSC7fFK7fuiJcXdSNu9W6Fk9Mriq3KWt8e7U2d3u4sWi/fvJo9Xo4/ca3IbvjsLW1VdY4XuP8dWJ3vBVGk8vVq2N2eRJGVb/zGofFt303jGPbaDJ9VYxpa2sUjjqs6XGqKo59eTKanX/8uW5bdf4nen2OQ3WNT/UYAQAAgDNHAJtVVIarMVTd32kPYIv125O96sU0rF0ng637OR7T4HRVAFu7ND6FAWfitI4vDRtLMYTN09cBLYxnwW4YVwFsNBkdLYAtw9ekwzpwzccQ128qvJyM2sLo9Wxy/AAAAMD5JYDNqmFJALu/MwmN1Qd7YbJGApv2M5/B+mi4dVTNAt26LlwqW5N149unAWW1/XybOoBN978q3NqSIy0LOLtnoKbHrqu9j3b99l82vuZ5FzW6KTxRtZWSmcCzSo/T1d6hK4CtA8m2GaDpzNGyLZlBW89SLQ7QnN2ahKdtFsaT7T/ebQlgd9NtFgPZfIbrLLSNx86T1iWWBZirrk9pxfnX+47HyXVLZ/7m+1bVc8gNy8YPAAAAcBQC2Kwa1glgkxmxXZr9VP/0f3TdLJCcBqLzgHIhmNy9rmhvBrCNQLNs7x9w1trbq/A0DT3L4/ebdbvO/l3jm5oeb/6ohMUZwOX1m/XX1d4tDRDrWhY09lqfBbj5DNWyvxUhbGyf7x4fOZDu33wEQTQZxTEn25Sh5TzEbJ/hWm1fjLVvKLns/GvL2rvOfzqe+XjbjmMGLAAAAHBaCWCzahgygG08e7UZMvYJYJthZh5STh0qgC1nj+ZhbuxzMeBttcb+S8dXBbZpzc+tCnjT9sYxutq7xWCuMaNySSi5PMCLoeg8IGwEjktmcM4Dx+a+UWM8bWOJx8wC2Mb4C/NjNGfLLjjpALbz/NOxVlrGdNQAtgyhV10HAAAAgEMSwGbVsDSAzZ75eoRHEPQJUNcPYNvDzOMLYNewxv7L+0/Prz1cjsr965C1ZYZrV/syfQLAaFUAOTtGsW/z+bEdAWhszwLYGBbODtErgG3OMI3m59TRf3asVVadf9Te3nX+6VgrJxDARl3jBwAAADgMAWxWDUsC2Bi47iTrj/ZLuKYB6jxQLZQB6zy0bAaT9YzO7BEEC//Ef40ZppX29qq/xvrlIeii/vu39t8ImwvVbNjZvmVAm7RH6T5d7T30CQCj1QHeNGhsC0NjoLoq+IszWGft5YzR9BjtAe3CIwjSkLM8xnyfxf7jMechb1d7rSvAXNbedf59rn/jusaQO7smfXSNHwAAAOAwBLBZRTFQ3d7OKnvEwN4kaVsnfS3U/UzVM1jrIDZWHp5mbZNpCJnWjZPpTNHZ61n6lO6bVtpHvk3efx36JrXGDNLV+3ePrzFzdXzT/FgxrK1myM73i5WMv6u9Qwzl6n8WX4aAZbg3fT0N66ZhZL1uXosBYHmsPLWsTJ/Tunz/tH3hEMmYyhqPp2MaTcpwMz7PdTyen0fbL+HK+8/7WN7edf79rs+y8+++/pXGNVi89n0IYAEAAICTIIDNagjNfqYBZP4IAWBg1fNohbAAAADAcRLAZjWEtJ/m7Mz+/yweAAAAADj9BLBZDWGofgAAAACAzRLAZjWEofoBAAAAADZLAJvVEIbqBwAAAADYLAFsVkMYqh8AAAAAYLMEsFkNYah+AAAAAIDNEsBmNYSh+gEAAAAANksAm9UQhuoHAAAAANgsAWxWtf2d7bC9vR0mewfVmqau9lXSfgAAAACA80sAm1V0sDcJ2zv7MWVtDVi72rvU/QAAAAAA55sANquGroBVAAsAAAAArCCAzapBAAsAAAAAHIEANqsGASwAAAAAcAQC2KwaBLAAAAAAwBEIYLNqEMACAAAAAEcggM0q2t/ZDtvbWU32yraoq71L3Q8AAAAAcL4JYLMawlD9AAAAAACbJYDNaghD9QMAAAAAbJYANqshDNUPAAAAALBZAtishjBUPwAAAADAZglgsxrCUP0AAAAAAJslgM1qCEP1AwAAAABslgA2qyEM1Q8AAAAAsFkC2KyGMFQ/AAAAAMBmCWCzGsJQ/QDrOgjjrdvD5HL1EgAAAOCIBLBZ1fZ3tsP29naY7B1Ua5r2JtP2Vdssk/Zzftwebty6Ilw/ebR6fbyemFwVrh7fXr0a3lH7797/ZK/fZLQVtraqGo/DeDSpWo7P7ngrjE5JcjkZfaI417vDbvX6NJuONVYV/F5+MIzK12fnHFYqTuD7ir9pvm8cwteK2y7+/EPHf/udSfX1eOMJvcnrHP+W4v3Z6PtS3Ps/VIz1lurlMm+M99Jo+nMcczy/95zUHzv1vVtfw/x14kSuX3VN6j7r6rpGbTb2/tbXzOcfAIALrvhP4bPvuAPYg71J2N7Zjylsa7gaw9n5+v2ws70d4uZ91f3Q36XxFRsNYI/a/ybHf3kyagSjMSjdygLYyWh89oO+hoMwHj1Y/Xz67Rb3xrio0eTZak18T85B+BpVIVIZulRhzEkFjmdRDKVO8nqc9PE34Y1VABu9p/j5xALYwsL1i/fwuPp5CHl/8XXxGTpMCLsRPv8AAFAq/lP47DvuAHZmSQCbi4HtmQxgL98Urt+6Ilxd1I27j4ZbR9Ofr966LlyqNqlnZpbrx7dPg8Ty9VXh1upLbzm7M9lmJjl+rBvjl67d6+bbVuvmx6xqdFN4YnqEQtJ/Wo0wM98mHX8P2Tibx+/u/6jjX3r9ZtL3pq759e+SB7ANlydhVM+MTWqcfEGuZ8/GY8RjTbeZB7bzdYszYOu28Xg82ybdd2o3jGdtozCZTLddazZtY9bo7WGyW7wezz+79SzTMuDcvXu+XdXF5cnt1bpPNM49ms9QrdrSvuqQt9F/rGZ42tX/NGxNQ+MsQJ7tU1XdVq0fjarxj+8uruV0m8Z5dIxvmfS9zav3+1NsFgOYMnQpKgYweWAWQ7S4vq40XKrbYoBTz6DLtylnRVb1nmqb3rPsqjHVle5X910fs67G+FfsX6tnapYVA8MkNCwDvqLSmY6NcK26fun+6+g6fnpN87Gn4y7b0nOtx3HE8eXv/cL1y44f76OFALZYl26T31+rrn+XrgD2xK9f1l8U+6z7qq9ffJ2OpX6PT3p8Xf3X+6/6/MeG6d8BxZ//Pd8XAAA4a4r/FD77NhvA7oedyV71cz8L/WzUNCC8fnRdFqg2A755yDgNN9v+SX37LM9peJj+0/py30ZImVrcPmo/dqEKT8twt9I2/uWm57+wfza+pf0vWHP8iVXXrzGeKsROx9yl8QiClscPdM6A3a0C1Hrf4nUeVC4LeqchXjOwTbeLY5sdqwqE1w9fk+e2xtej2xsBbBRD1mlQOQ0fy9fJjNMozkRt63pS7NdYv3t3sm/Lc2NjMJrNwF3e/zxs3R3XwWmxLht/Kh1nGR6X+8dxVPsfYnwnKQakZehSVAxj0gAwBjiNYKgYf2sIVew3W1+8rkOxuP8sIKuOnwdNKxX75uNJA7c6YMoDpdnrjv3LkKslsEsD2Px1Ov54vDSwKrcv1vXVdfxa7/XFuaXnc9TxNRTHzscwu3cq6SMIovr9mW1TLNP3p+v6d6m3T2vQ65dtX8rXxddxbPV+xev0HoxObHxRR/+rPv9TAlgAAM6/4j+Fz76NBbAHe2Gy5uMHooV+NqoKYBuB4WKIWIaDHTNLl4aMMTCcBYiLgWc+KzZW3wBzGrY2962rX0BZBZzpvi39rAxQjzD+VOs2ZcCch8nxGvafAZsrA9F1H0GwO+4MRVcFsI2wNj1WDFyzsSw7zjJtoWl7uPqJztBx2T/7bx4vBprz7coAtDG7tKqsr6X9x8C4DltjMBp/LtaNk/Gns3DzY8/Pfx7kxjHV17zv+NqU90od3Ge1Vki+THGIH8rDpUIMzRoBWXEubeFRuX8WBi0LmpaKx4jhUVJ5ANsWZs3WdeyfztZs0zhWVPw8G3/LsetaDLHarTx+YtV1iwFa3V8jkDuG8TXkY2sba+wzuaZd70/X9e+y8etX9NcngF3Wd+1E398e/QMAwEVX/Gf02beJALZ8Tuz2JPR4QsGChX42qiUQXRbAHiZALE2PV/bRCGMLCzNYF/uOlh17GsCu+ciBJco+6hC17wzYI44/1bpNawB7VHG2UTNwPU0BbJ++5uahY2o+k3Su+5mq7ccqJSFpDEPTY++Ou447tbT/xmzVartiXd1H7K8RJrdtH39IxpiG0n3HtxHFGI87gF267RKz2XmVPHBrBFKVRsDXsf+RAtjCaQgQZ8coKg8Djzq+hnxsbWPN3vPO9+esX7+WfRb6WjKm1ImNL+rRPwAAXHQC2KwaVvwSru01HzuQWuhno6YBbCPELGd0tjyC4DABYi0es2iL2zTCybKvvO/FALMMWmfHTkLOKgBt9Fsdo9cM2HL/LMDNx1RY2v9Rx59ov37TbZvr2/dvF8PW7J91xtAzSycno2Sb3fi4gSyQPakAttDouxAfSdA/gJ0GlOnxp7NF81mxK8LVWvnoguXbxKBz0jKzNp1tOpMEqFMr+s8C1XK27Wh+zMk43a84zlZ6vslxk+Okj0zoN77NaQvQFkKfYqzLAp58//i6bdsYlC7M3Cv2awS48XWxTRq4xePl/+Q6riuP02P/GCbn44ljqbeZhV+17Fzb9m/Ten6FruPXVgV0UXxP2t6ro46voWVscb90n9hf+n4svD/Ve1Dv03X9a6f2+hX9LYSi+TiXjCl1ou9vj/5XKv/O2Qptj8cBAIDzovjP+LPvuAPYMmDdzqoOXKvHDuTtZ/KXcJXqGbB1EBsrm3FZhYp1LQZ/6b4t+5dagt5KGTzW+45vmgaO5c9p6Jj10Zihmveft69QB7iNWjX+qpLjH//48/6rEDbdpu/5Fd+M57/gqq6W5+zVX4DLSsPXtv3TX9LV3l4fI/0n7OU+ST+zkDX7RWCj0XqPICiD0+Sf1scQMg1hpz83Kw08y0cDZO2LAW4cZv2s1dw0FG3uP591urL/3eSXa82OHY/XDFDTfacV25N+xwez7ca79fp6DKvHt3HFeeb/zDkNvOpgbFl7vn8MRNvCoFUBW71vrDfGgC8uqz5iKFWvqys9ftf+URkSpttUbem+5bqi6tdpH/n+sfLzaDu/Psdvu76xWq9TFgTWDju+BcX4Ft67ZMxlFWMoj1X0WYaxxc/5+5OHiMuuf+pUXr+Wz0asdPxt/Xe1xzqW8RW6+u9jdzz/OwMAAM6r4j+Vz77jDmBP2lD99DMN/3rNFoUBLJtJC33EIGkhxDuCGD7lgR4n47jfO86Cln+lAQAA55AANqshDNVPp4XZn4uzU2EI8bED9QxY/wyVdTVm6BU/H5eTOi5zjRmUrjEAAHBOFV95zj4BLAAAAABwGglgsxrCUP0AAAAAAJslgM1qCEP1AwAAAABslgA2qyEM1Q8AAAAAsFkC2KyGMFQ/AAAAAMBmCWCzGsJQ/QAAAAAAmyWAzWoIQ/UDAAAAAGyWADar2v7Odtje3g6TvYNqTdPB3qRsL2uyV63tJ+0HAAAAADi/BLBZRWW4urMfU9jWALYMZ5PQNW6/LKhtU/cDAAAAAJxvAtisGpYEsDkBLAAAAADQRgCbVcPKAHY/7HgEAQAAAACwggA2q4aeM2DjIwnMgAUAAAAAcgLYrBp6BrDlbNg1ZsEu9AMAAAAAnEsC2KwalgSwe5PtEH9HV638pVzpig4L/QAAAAAA55IANquoDFTr57u2Puc1ef7rQlu3uh8AAAAA4HwTwGY1hKH6AQAAAAA2SwCb1RCG6gcAAAAA2CwBbFZDGKofAAAAAGCzBLBZDWGofgAAAACAzTr3AezW9j1r1RAEsAAAAABwMZz7APbJJ58sg9W+yyEIYAEAAADgYrgQM2D7hq9xOQQBLAAAAABcDGbAZsvj8MKLL4WDbz0VbrvjUvjI3ufLZXwd15ftAlgAAAAAuBDMgM2WR/X8iy+FL9z9tXDX/Y+ER7/zdHj6pVfL5V33P1yuj+0CWAAAAAC4GMyAzZa1/Z3tsL29HSZ7B9WaNvthp9hme2e/eh3C1w++Gz5/z0PhiedfqerVcFD9HNc//M1vn58A9vJN4fqtK8LVRd24W61r8cTkqnKbssa3V2tzt4cbi/brJ49Wr4dVjnHp2Lp177/Z8+vWc3y711Xv5XXhUrVqKLvjrTCaXK5eHd5kNAr5YSajrbC1VdV4HMajSdVyfI5r/Mtcnoyqc8jPbzeMq3M7yf5PzOVJGB3x/Wj/fD4abh11/bl0NnTdv/Hem7Wnbbvj+fqyxsXdMje/p7I6gc/HSTvpz1+neB8X1+5MfgYBAIAjMwM2W0YHe5NpqLq/szKA3Ztsh529vTBJAti/u+3L4e5HvxsefPrl8NDTLxXLee0/+mTZfr5mwE6Du1UBbO3S+PQGHUcd22k+t2NXhrDDB7DHIgZO4+bNGkOmNBQpw6osYJqMmsHUaZSfR66r/TSL70n2tq1l1efzrH92u+7f8nVy8aahavN+3h0v/k+J2sJ9cwyB+HE7D59PAADgfDMDNls2rAhg4wzZsu2gGcD++d9+Jnzu0WfDO99140LF9bH91ASwjRmsyWywWbjWnCFWBhXV9vNt6gA23f+qcGvL98xlQUf3DNn02HW199EqOc9ZzfqZjr/R1mivxp22jW4KT1RtffY/sfPLzqsMwWczVJN1+fEb4+8zvuQc4759A9hqxtfWaFTNwByH3dmMuyQwyWbh5SHFNDBa3TYep8dYHsbEmYJ5kLcyGKnPIav0GPXsw3iM+VjnYzj6+OczWMvZrZPptm3HWnoeha72pW67Jrz+da+b1bU3PFQ1TN185Xz9YzdcWW13Tbizai8OEN472//KcPMN0+Olx6mPUdaVV4Zrr7yhaqkcOvTr+fke37Tkz69k/2Kf+Z8F6TZLPl/p53P2mWv5c3Lln0/dVr6v8bq1JNf5Pv0C2OI+zN+D5PNRdjP7LDePV4bA1XYxHG7MQs8/Y0kf08/W/J6f1op9q0pPOY6/Xr/sOjVmELd8dvv++bLKyvcJAAA498yAzZYNSwLY2QzZ6YtGAPs3n7wr3PG1J8K9TzwX7qnq3m9Nl3F9bD9dM2CnAcP1o+tmgcI0kJsHDAvBaSOAqwOKJJAo29OAYmpZAFtrb68CizQ0rELGPrNu6/Gl25bnl4WQXWObm44n/6f6ffY/mfNbHE/z/Kr3J+m3HEdLgNo+vur+qI8/C4t6BLBRFZDMw5lpeBHDiFlIsrvbCDTaQtJoWYAxDUmaoUl70BGDzPbwpBHAtAR9nTPs6uCp3rd4nZ/DYcffuB7V9Vx2nPbznupqX+q225IwdRqWvve26kWtDmnr4LR4XW/T2P6hG8K1WfgaQ9v09Z3XJMeZie/d8pCwy6rP5/TzMP/zaumfD8l9X25THq/j85X8WTkfQ/pnUr8/n7osvX+L+7D1Pc/WdwWwqz4b03uy2j/9vFfaZ+DO+8sfCVK2L4Swyeev7KP5eewzA3bZ/R+P31gfP8tJ/9PxLv989nXY/QAAgPPBDNhs2bAkgK2fD5tWvd3XvvHt8Km7vhoe+M5zRT0fvloup/XJux4o209lANsIFJuh3kJ40RLANsPCw4WUre1l4JeHubHPxYC3XRVwxpCkrpYxrBxbFYimte65RSdzfoU4vixwnb0fjfeq1vaetY+vNQxqPeYSMSxJQsk6iIlhRB4qzkKeLMCpLQswGseKloVOLcFNm3i8PGjqE8B2hSuHGn96/SqrjrNqDF3tS1Wh6WyGalFtAWw+M7YU983C1Dxwbc6QjZXOnp1rBNFrWvX5XGhrub/Lbdru+c7PV/1Znq4rty0/8/U+/f58Wkd8n+v7d+l7nt2vh54BW5t9hvPjrNgnavnsT2v+eWt73+OY0nWHDmBj/y03VXo98r76fNZz+WMhAACAi8cM2GzZ0PEM2FI2A/aZ514It33x/vCPX/5quOeRb4WHn3w23PP1J8JnvvxAuT62n8YAdlWAujqg6B/mrQpBotb21oDycKYhSlVtM9zaxlbN+Jyf3+HC5ejkzm86pnKM8b1Jz60zIJprG9/JB7CLMxsXAo9Ka4BS6B2QlGFPd1AzHVNzu9MUwC7ra9nxa13t7WI4emW4OclLY4B6lAB26ba1OJt2YQbsKQhg2/bv8fmK+14/vq6o+AiDq8KNRbUdq+xjyZ9P60nu36UBYz5LdflnsNd9Ez/bVXja7K4jgO1sj+/7Yjicf2ZOewAb9bqOAADAuWUGbLZsOEQAG33vuRfDI9/8Tvj7T38pfOCjny2XXy9ex/XRaQxgGyFCGSrMQ8Fm+FDP2Kq3r/ZfCP0WQ8WlIUalvb3qr7G+PQRt1ZhtVmkJTeb/pDhKjp9vW75e7Hvp/okTOb9aHFdxjNhHc7/q/UmOX44jvyaF1vEtCaDb9m/VFcDmAWN8vRDiTC0LMPoHJIvB6nRdFvC0hDKNEKgMm7Lj9AhlDjv+PIBa+CfTlWXHr3W1t8oD1Go2bO8AtnDzlc0ANz6SIN02by8D2GvyDlrepzWs+nwu3Pctfz60f3aj7s9X2Xf1Z0b6c6nnn0/Ldd+/MWxN3/d4H+SzMdcNYNPAszze7PMQx9PsL++/3qY+/mJ7U7zfu2akd34+C8vu/8WAtxhf0l96LUo9PuttlvUPAABcDGbAZsuo7RED25O9si2VbtcZ1CZO5wzYOoiNlYenWdtkGkKmdeNkGtTNXs++sKb7ppX2kW+T91+Hfkn1nSFWBYiNfVvC4YUxJMefBipVpb+spxHILN//RM9vpu6jLbjJj59v0zG+xjUs2mbvf9t1TFRhajkzLiYYZTAyDVumoc00hKl/ntYojMfztjIMmbWlNQ1Y0n3L7as+YrWHLXm423b8lqAvOW4z3Gkf37yPYxh/eh3j+lF7kNMV8HS1LzP/xVqxrgzvvWb6ehrC5o8PmFYjoM0eYXBt/CVbjQC2uW/rIwjiNchCuPW0fz7rQDRWGYpW/4Ml3aaxrt6uoePzVX5+qs9K+nPU+8+nZfrdv2WIWben17FxXzcr3o/Nz2Za633+Gv3X2yby9vQzFgPS+s+Euhbu4zU/n41tss9XrHp8fc+vj8N+/gAAgPPBDNhsOYTT/wgCOKdigJKnP2fMsiCnK+A5LQHQ4jNgu+X/ZJ71pEFivAfOUhi4OEP1jKqC3rNy3QEAgONlBmy2HMKpCWAXZl/1/WevcHadxUBn6QzGxDxka/kn1dW+mwp/GrNcW57vutKRZ79ecGXwV98T9b2QzhI9vfrc9wAAAGeBGbDZcginawYsAAAAAHBSzIDNlkMQwAIAAADAxWAGbLYcggAWAAAAAC4GM2Cz5RAEsAAAAABwMZgBmy2HIIAFAAAAgIvBDNhsOQQBLAAAAABcDGbAZsshCGABAAAA4GIwAzZb1vZ3tsP29naY7B1UaxIHe2FStMX2ae2E/aqpDwHsoicmV4Wrx7dXrzbk8iSMtrbCaHK5WgEAAAAAR2MGbLaMDvYmYXtnP6awywPY2H5IAthFl8ZXbDyAvTwZCV8BAAAAOFZmwGbLBgHsAG4PN25dEa7OaxbGJu3FujKoLV9fFW7dvSlcX7fF1zE73b2ueh3runBpepBeBLAAAAAAHDczYLNlw6oA1iMIjlXXDNh58DoNVeePLJgGtNdPHi23i8ptRzeFJ6rXfQlgAQAAADhuZsBmy4ZlAWyu2K58ZEFPAthF/QLYJTNay1mvVdvlOCu2mg27ht3xVtgaTapXAAAAAHA8zIDNlg19A9iwH3Yme9XP3QSwi3oFsEvbHw23jmL7TdVy+XFWMQMWAAAAgONmBmy2bFgSwO5NthvrZ7+0qycB7KL5IwWiaaC68FiBVcHq7Nmv689+rQlgAQAAADhuZsBmy2h/J32+a1XZDNcYwi5r6yKAbZP9Mq70Ga6NX6zVDGbnFkPbdQlgAQAAADhuZsBmyyEIYI9fOYN22TNi+7o8CaOtLSEsAAAAAMfGDNhsOQQB7HHJZs3GSmfOAgAAAMCGmQGbLYcggAUAAACAi8EM2Gw5BAEsAAAAAFwMZsBmyyEIYAEAAADgYjADNlsOQQALAAAAABeDGbDZcggCWAAAAAC4GMyAzZZDEMACAAAAwMVgBmy2HIIAFk6rgzDeuj1MLlcvAQAAAI7IDNhsWdvf2Q7b29thsndQrWmxv1NuM62dsF+t7iKAPX12x1tha6uq0SRcnozCeHfaFn+u20anPJlLxzqtcahO49Amo/pYo2kweXkSRsd4/HVNRtU4VpiMPlGM7e7Bx3YY07HGqoLfyw8W17deN8A5xPezuOcBAACAk2EGbLaMDvYmYXtnvwxYlwWw5Tbb/UPXlAD2dCnD1zptLdQhZrKqFNef6gB2d1yGxydhdzwK46LS85+Mhg9fy3PM35hWB2E8erD6+fTbHd9eXN/bi+v7bLUmXt/hAuT4Geh1WQEAAIC1mQGbLRuWBbAHe2Ey2aterE8Ae4rE2X89k6elAWwMBWczQttnyc5nkRY1Ko6TBaVd7V0a+1eVn1Zjlm82c7Xevxz77HzmM02nYetuGM/Glf5cyK7BLAiu1o+KcyrXj8dhXG3TGF9jVm2s9nA3jrP17WrMGr09THaL1+P5Z7eeZVoGnLt3z7erzu/y5PZq3ScWjj+foVq1pX3VIW+j/1jN8LSr/2nYmobGWYA826equq1aPxpV4x/fXVzf6TbN67t6fOX1X3nPFe93+b50zz4GAAAAmsyAzZYNywLYuH6nqNnjByZh1ZMKcgLYU2R33B6qtlgewMZoci4PCfP9yiA0Cbu62vuKx2kNJwtlwJo2xmA027gcRxmUTsPP+bjmYet8pmSxbllnhThjtj6leJzp+UxDvHK3xnWP67NgL45v4RrE7VqC2TJcTJ7bGl+Pbm8EsFEMWadB5TR8LF8nM06jOBO1MY7KpNivOb67k31bnhsbg9FsBu7y/udh6+64Dk6Lddn4U+k4y/C43D+Oo9p/7fG1vAcN0/dOAAsAAADrMwM2WzYsCWCnjx9Ing+75oxYAewpchwB7MLszXyWZh1e1ZWHiF3t/aShZ6p93EWfWcC5NPhNZwnXwW2xbpwcc2EGbnKc+bjmfcYx1YcsA9p035ZjlMrrvHht2kLT9nD1E1nouGjZP/tvHi8GmvPtygC0Mbu0qqyvpf3HwLgOW2MwGn8u1o2T8aezcPNjz89/HuTGMc2vb7/xLZ1dDAAAAByJGbDZsmFVAJsFrnuT/rNgBbCnSOc/vZ5bGmRmswLTcLFV6+zORFf7EsueydoazNZBamLpM12zkLrcrlhX7x6Du8Z1ads+/pAEuemYdsdL+s21BrDz0DE1n0k61/1M1fZjlZKQNIah6bF3x13HnVraf2O2arVdsW5+fatHF9Tato8/JGNMQ+n+4xPAAgAAwEkwAzZbNix7BEFhb7Id4u/pmtoPO2bAnllx5mczWJ3OSM3DqNYANg9wy5Cwue/Cb+3Pws+u9ql6luyysDK2t7ctjDsef2Hb+ezUBVmgWh6vGHM9xMk43S+/dslxk+Ok59waWBfbLqwrj714jnkgOp0tms+KXRGu1spHFyzfJgadk5aZtels05kkQJ1a0X8WqJazbUfzY07G6X7FcbbS802OmxwnfWRCv/HFa9sS1NfKe6ZlVjIAAADQyQzYbBnt79TPdk1qIWDdDztJ+zyM7SaAPX3yf0I/D6emgWLaNq15EBgDxPn6URiPp69nAVr+z/OzELGrfaoeR1sAme+/+IvAmtt09Z/sXwdvsWbhWzOsa55/XbE9uXbFxai3G+/m59J2jduuwXSsC2FiDE6Tf1ofQ8g0hJ3+3Kw08CwfDZC1Lwa40yCz/REG01C0uf981unK/neTX641O3Y8XjNATfedVmxP+h0fzLYb79br6zGsHl+pYyZ4+XiKJe8JAAAAsJoZsNlyCAJYOKQYCC8ksBzV/JertWkG7gAAAMB6zIDNlkMQwMLhLTyygaPpmP0KAAAAHI0ZsNlyCAJYAAAAALgYzIDNlkMQwAIAAADAxWAGbLYcggAWAAAAAC4GM2Cz5RAEsAAAAABwMZgBmy2HIIAFAAAAgIvBDNhsOQQBLAAAAABcDGbAZsshCGABAAAA4GIwAzZb1vZ3tsP29naY7B1Ua+b2JtO2tNq2W0YAu2h3vBW2tsZht3o9tCcmV4Wrx7dXr/p6NNw6uiJcvVXU2vsuNxmNwuRy9aIyvT5VjSbh8mQUxtXFij/XbaN8xxNWj6vuNx1LHOdxmIyq4+VVX4BB7YZx7Ls6t8b5pnVM5z6k+F4Off/0cnkSRsdxPeNxivfmVJ4jAAAA55oZsNkyOtibhO2d/ZjCLglgd0LROhO3F8AeXQyANpKpFS6NDx+iHmXfBbvjhWCxDDmTdXXol1+ruH4T4dLuuOh3lITnhwjMJun+LRbaYx+bulliCJuc38J1P67A8Bh1Xd/T7jj+bNjU5wMAAADMgM2WDUsC2FweyHYRwLaLAcnhQpZkJuqsrgq3VllLGZCmbaObwhPTpsLt4ca0ra5GoNrj+OObkm3mbeuKsz0b12CNoHFpwBRD3WR2Zts2jVmmoxioNgPEVe0xgJ1MkuC4JYBszmLNwtrZ+nnlp1wHiMvOcdnx4/bp8ZbN2B2P02vUEvbO2uKxlgWwzfWlZN9yDLP3ojnLuR5XWcUxGrOg82uU9DE97+r6z7ZZsW9V6fWtr0Gs1vun0Hl9V12/Lg/dEK593evC6+u68oaqIRHPI7+2a5q/TwAAADAsM2CzZUOfAPZgL0zibNk1CGDbxYAkD966VeFoGqruXlcGoTe2Hmu6/fWTR6vXU8tnsXYffxrwzkPX8nEGjZC3r/jP27PwanfcOzRaGjDt7jaOGcO0PIBL9yvDwNaAcSpvLwPYorleFjs0wrLYX2NcMYTMwrTuGbB1uLcYEnYdf+G+yq5pbM9DxXl7fE+SQLN8vXh9ZuFjdl6lMgRNrk2xXTqe8nomK6bHm/eZP5KibM+ubyP0LPtoXs8+M2Cb5z3X5/ouv37dbr7yynDzQ9WLwmM3XNkSwubvw/rWHRcAAAAcFzNgs2VDjwA2Pn5gzfxVALvUNNxaKyS5fFO4fmHGaZzVmqyrAtO0egewPY6/sG/Z33XhUvWyt5bgLA8LV1kaMFWh3ywkzALA+rrP2/OwbnX7QvBaL6P4c7Oz0myfSncAO21fOMcex4/7NDZpCWCXtrdd//T8CvMxFdcpWd8Q9ymvXR4irtgnmu2X1/x6xYA0vwT5OR06gD2G67tSPvt1VteEO6tNam3n2Vf+Pw0AAABgSGbAZsuGHgHsuo8fiASw7RaCnD5aA9JE2Z7Ohl1zBmzX8QsnGsBmYd8qrQFaDPiy0K/zOu8uzlBtyNoXwrhJMuYeAV7UN4BdcAwB4cr2tjAxe0/ar3smXrMqPG0OtyOA7WyP16Z5LaP8nE5tABtuC+9te+RAi6MEsFGv9wkAAABOgBmw2bKhK4A9xOMHIgFsu4Ugp5fqEQGN8DQJWfMwtJoNmwew5WMDZsdIQ9qO4xeOLYCNYdvC7NOYZ+WzguN27bMeWwO0NMCLr7N9FwK8GBYmG3S1N8PU6dia/0Q+DwgXQ8XGNmVY2bwOqwLEruM3rkt1/ul1Wh0gLr4nXY9oiNLxxvb5+UyvT7p91/u72N5UPoJg4Xrm12/19Y1a759Cn+u7/Pp1u/Oa14Vrb0ieQdAqXpN8HOtZdn4AAABw0syAzZbR/s522N7OarJXtqUO8/iBSADbLgZNjSCntyokTR4xkD6DtQxI6/XpL8tqhKrZL+NqPMN1+fHL4LZaNw98m9usY9ksvzJki8FmVfNtpmFd2jatPACs14/CeDx9XR8jP/Zi+Lm8vQwjq/WzcCsGfGkgWIWe6TEWzrEMBev2Vf23hHBdx2+0F/tXv7Aqjje9NuU+yTga51OtK2s8nl7z4hyb1zat6Tn0On5h+fs7teo9iAFp/Z7WtRA0Lr2+3ffPquvb9/y63HxlxyMI4hiykHldcazrjAkAAACOixmw2XIIAthF0yCvGbxdSDHAytM3WGFxhur5c/j/OZOogmQhLAAAAEMzAzZbDkEAyyoXIVDjeDRmxh5xhuipdQyzXwEAAGCTzIDNlkMQwAIAAADAxWAGbLYcggAWAAAAAC4GM2Cz5RAEsAAAAABwMZgBmy2HIIAFAAAAgIvBDNhsOQQBLAAAAABcDGbAZsshCGABAAAA4GIwAzZbDkEACwAAAAAXgxmw2bK2v7Mdtre3w2TvoFrTVLeXtbNfre1HAEub3fFWGE0uV6+O12S0Fba2qhqPw3g0qVpO3rTvUWg7tcuT0XxcjWrf/jSYjLKxXZ6E0YDXEwAAADhbzIDNltHB3mQaqu7vtAaws/ZKDGPXyWAFsBy3yWgcdqufczHkTIPdGPRuZYHhqv2Pw0JoWUnHFsc1rgaxbPuN2x2HrXqQiXTsAAAAACkzYLNlw4oANg1c4+tlM2XbCGBPmYduCNe+7nXh9XVdeUPV0G02u3MyXjp7s559GoPG+YzPeeCZzgLNZ8DWbeNxevwkLI2zL2fr55WGgXkA29Bj/zJ0TNrajlWGuvU2o+LzkAWo9ev0XBvnUVgWYnZdvyOPL78GK2azxrG0Bq2ds2B3w7g8fvO6AAAAAOefGbDZsmFJAFs0hJ368QOxJnvV+n4EsKfLzVdeGW5+qHpReOyGKw8RwuahaDNcnIWEdUhXvM6DvGVB6TR0nB+vbbuuGax1iLksYFy5/+5uoy0PIctwM1kxHe+qALa9r5WzSFddvyOOLw+Ly/bWMDWGqMuuU2xbFa4KYAEAAOCiMgM2WzYsC2CL9c0ZsDthjQmwAtjTJJ/9Oqtrwp3VJl3aZkXGEK+xbnfcGq6m4j7LAtiuY63zCIG2gHHl/i2zZOfj2e31PNlZALxi264Adun1O8r4WvadVsv1aAvWE233AQAAAIAZsNmyYUkAu78zaQauS2fKthPAnia3hfeuMdu1TT6DMjrNAWwZSmZB4vL9F2d2NsfTP4CdPkZh+TgPF8AedXz9xl8SwAIAAACHYAZstmxYEqzmz4AVwJ5td17zunDtDckzCFrFoK99ZmQ5uzML8RYCzRMPYJMQsmifj3MxoCyDxCwpXLp/3DY9t2rGaLp7DE6b45leq3Sb2fEbY2s6VAB7DONbbF8m7tc+9mlbdp1T5Xkv3icAAADA+WcGbLaM9neS57u2Puc1ewbs9k6xpj8B7Olz85VdjyCYhnbtAewojMfxuaKxfVrzQK/er1nzgLC9ve4nhq/1unKfOsgrqhEaJuubY2w7fktQuHT/5hjivvW5piHn7BEDVS22TfuMYWe9TT3+5vFjdY2/efyjji/K29ve5yhul+9byoPgzPS8248JAAAAnG9mwGbLIQhgz5e2RxBwTsWguiWBXTl7twyR3SMAAABwUZkBmy2HIIA9PxozJ/3z8gthIXDvmP0KAAAAXGxmwGbLIQhgAQAAAOBiMAM2Ww5BAAsAAAAAF4MZsNlyCAJYAAAAALgYzIDNlkMQwAIAAADAxWAGbLYcggAWAAAAAC4GM2Cz5RAEsAAAAABwMZgBmy2HIIAFAAAAgIvBDNhsWdvf2Q7b29thsndQrWmq28va2a/W9iOAXbQ73gpbW+OwW70GAAAAgPPADNhsGR3sTaah6v5OewBbrN+e7FUvpmHssqC2jQC2XQxhxxJYAAAAAM4RM2CzZcOSADYGtM1Jr/thJwlkuwhg212ejASwAAAAAJwrZsBmy4aeM2DLGbPbO6HvgwgEsO0EsAAAAACcN2bAZsuGZQFsYRq6Vs+AneyFvYkA9uh2w3hrK4wml6vXAAAAAHC2mQGbLRtWBLBNHkFwHMyABQAAAOC8MQM2Wzb0DGDjL+FqPhN2NQFsOwEsAAAAAOeNGbDZMoqB6uzxAsljBmbiM2DTtnXS14IAtt3ueEsACwAAAMC5YgZsthyCAHZRDF+3tsZB/goAAADAeWIGbLYcggAWAAAAAC4GM2Cz5RAEsAAAAABwMZgBmy2HIIAFAAAAgIvBDNhsOQQBLAAAAABcDGbAZsshCGABAAAA4GIwAzZbDkEACwAAAAAXgxmw2XIIAlgAAAAAuBjMgM2WQxDAAgAAAMDFYAZstqztTbbD9va0JnsH1dq5g73JrH17Z79a248AFgAAAAAuBjNgs2W0v5OGrvthZ3s7NDLW/Z2wPdmrXky3XyeDFcACAAAAwMVgBmy2bBNnu6YB6/7OJDQmxR7shckaCawAFgAAAAAuBjNgs+Wi/bCTzHaNWgPYbJtVBLAAAAAAcDGYAZstG2Kwmj9+oCCABQAAAAD6MAM2W9amv2QrC1orC8989QgCAAAAAKCFGbDZMooBa/pLthYc7IWdJJn1S7gAAAAAgDZmwGbL+rED21nlAeveJGlfJ30tCGABAAAA4GIwAzZbDkEACwAAAAAXgxmw2XIIAlgAAAAAuBjMgM2WQxDAAgAAAMDFYAZsthyCABYAAAAALgYzYLPlENIA9ptPv6aUUkopdaHq//C//9+V1damlFJKKaXUeSszYLPlEASwSimllLrIJYBVSimllFIXqcyAzZZDEMAqpZRS6iKXAFYppZRSSl2kMgM2Ww5BAKuUUkqpi1wCWKWUUkopdZHKDNhsOQQBrFJKqeOvj4R/tfXfhLd8sa1NXYS64+0h/H/f3t4Wq6t9yBLALtZpen+UUkoppdTxlhmw2bK2N9kO29vTmuwdVGvn9neWt3URwC7W+35sK2xtVfXPfit89u3/TfhXf9W+7VmteI7f//bLrW3qkPXF3wrfX983sxqH97Vt21HDvz8xLIvjzQKzvxpPz6P4HDS3V6vqfT/WETxm98r3/9i4qI+0b3sKq/P8Bqq3/LP8fg3h+4r/kvi+H5uGR/Hn1gDpi8X6ou2mfH1WPxOP9c+mfzfe9GPT4113Quddj/dnevxdE8dyUsHYdcX5ltewqKP2Ea/fqmvc1X7USt+/rqoD2Pp9KKu4j/Ltjnp96vto2b5d/Z90e1p93r++1zet+hrU1eee71PpuR3q3u3758dh66SPf9Ta4PnXrzf651/X+ce/t/23kFJKqXNUxV91Z9+qALZP6JouoxiuzoPV/bCzvR129quXhYO9SdiOK/Z3BLDHUGX4mgQhMXyNAclZCmDf8s8OF/qpY6gYWKZBWhlgnpH3ow4Fk/HHoO373U9r18rPYHlPNIPDt/wzf8asXflnLVYVrJZfmqsv00cNd34mCZhi+HZSAWys+KX/uMKow1QebMSA7bDjieeyKiTpaj+uSt+/VVUGsP+/rUagGK9Hev5HvT5lqPNjxc/Fvdl67vGeXdH/ibcn1ff96Xt9ZxU/o+vus2atGnv8DC8NlU/gz49GnfTxe9RpPv/4vg19PRrV4/zjd4TzNiFDKaXUxa3ir7qzb1UA2yd0TZdtYuCaBrAzAtijVwygesxCi2FJPXMtDddmYe2PVbMG12wvK59F2fJ/2/MZurNZYPm+VaX/sViPIdayGZaHPb++deubXxde/7qqfvSG8Fc/emX4q0vz9r/60aT9ddeEW6v1d7/nynLdu958zaHauyq9Nnn1no3aEgrF49b719c2vp73t3iN2/pM3/eyrQzyqnX1fdJx/6zsv7r/Z+Fa/jpW2md1nPrY9fFW3h8r9p9WPRM3VnFfv326/Wy7o5xf70rHMA7fXx1z9jla+Jylx0/3TWp2T8T27vE0PuPp9lXfS69xV3uyzdL2otL7MFYM4aeBcdf5Nfdd9kX10OeXVHyvF45ffYEuvzRXX6DTwDSdvRir/KLdsn/dHo+zEMAWx023yQPZGGrVbTHsagtty5mDReVBSBlAxPCo3j/bpgzwqvX52NN+0wChrPocsvNLw7i2WhaILBt/WnGbddrrc/uZ9Pq1HCN/DxvtHe/fqvOPAez/+N6t5nsVt4+Baf06q0Nfn3gP5fdeUfE9XNX/Sben1fr+xe3ra1fUOtc3VnqPtm6T3rNFpddodn9U17s+Vtt1jNsurM/HVlXj/au2Kde1/Plx5Oo4fn1vx7HX5xsrfR9W3v+r2s/A+Zefp/jeFevr8aXnl16T/P1N762yLb2X6nssvwbpvZe0rzz/+HdUy3+Xz6v+O/J0/CsRpZRSalUVf9WdfasC2D6ha7pctB92JnvVzxkB7NHrr8YtgVCz4pf+xjYxUEr+Y2waPswDg/g63b6rPf8nteX2yfHL4GIh7Mhn07UHFmnl/dZ11PPrqjJ8ffOnZq+noek8gI3h65vf89Cs/Zsfu6YMaZvbN0PXdPuu9hOveL2S96d1XXwd/wO9vq7F6zxIWnZdF9Znx+66f8pa1n/8YhGPVbyOfcR7La5vBrAfadxbeQjWeX907N94XYVx6f5HOr90m6U1/fI02748Vvp5iu3ZF6u4TWMMxTb5mOqqrm1rW1XxGizcL8nrtmvc9R7M27vHX/4Zk59Pfg2WnV9Syx5TcNTzm1Y+pnnF4Kj80lx9mV4IkeoqvmDnX+Jn+yav0y/pdbgx2ybrowwBkkCrDgzyL/HLArp8+/h6IUhaZ30MEZLxxPGnYyn7y0OIpJbNblw2/rqWja+uVeNPj5tvF8e/cH7JGPu8f8vOf2kAm+yf12GvT9u9F6s1IE36OOn2upa9P0e5vrNadU2Lz3l6zeLx0oAwHq8RGC65jsvGHysec+n7UtTsHOM4V72Hh6zO48d7Or2uxev6nLvu/672epvTev7l/VK3V6/XeX8X1sfzX/PPv+7zb/k7dKG9+DtOAKuUUuoMVPFX3dm3KoDtE7qmy4aDvTDZbj5+oEEAe/TqCkfqgCpbnwYNC2FBdsyV7VXgNJ/5VVcdNPQLPg4dwB7D+a2uT4V3JWHqQl26Ibw5CWfruvXN84A2Bqrv+ljS/rFrFgLYVe2rKp7b4rWfVu9zzMKk1nU9rlnr+1NWM3hqBJKd909Vy/qfvf/VF4jqXmvcTy19pPdD5/2xav/Ylt3fjetw1PPrUQvjL+otPzYf09J7JB337DrOj1HXZ99ezyRtr/b3vfm5z4PNfMyr2jvHv2Lss+qzTVFtfw4dx/mVVd4Li8dfq4ov5/mX9YUv9fFLePIFPX6BbwRARcUv8fW6ZYFc30qPVVbbmIpaFkDEigFCHRo0AocqUCjDnawWQoZq2/xc+1Y6hrZa1r7y/OOYWmZrzkLFrvev4/zXCmCPeH2Wva+nJYBtfX+OeH1b98mr5RjpNT6Oz0dXALnxWnJO5bVZdf93tVevT/P5n5o//zoq/x/HSiml1Fmt4q/Bs29VANsndE2XtfI5r9uTsDJfFcAeveKX+iwAatSS4OHYAtjOgLWrfVoC2OXtJ17F9cgD2IVr3eOatb4/SVv5Hiz01e/+WNp/+v4nM1Xn91Nx/GxWR34/rL4/OvZv+/zl+x/l/HpUHv7lfb7vx3qEfiv6r2cVt7XFWuy/qOJ46fucf77zfVa1d41/4f1rq17Xt/29Oo7zKyveKxsKYBsBVlFpaHAaAtjZMYp909lfsfqML+4fQ4n8PPvWqrHF6jX2el16/l0BU4/3b9X51wFso/+WPo96fcpa8r7Gc1nV/0m3x1r6/hzx+s4q2yetGJ6l1zW/H1beH0ktPYeiBLDnO4CdHaPY9zB//vUpAaxSSqnzUuc+gO0TuqbLKP4Sru1ljx1ICWCPpWJA0gwXYmg0/4+t/J9A50HD6gCqu32x/2Z1jS9WY4wx3GgJKuI42vo56vl1VXwEQTMQ/VR4V3xuaxWa5s+DzUPbsxfAxvcnu/49rtmy92da0/dk8b3qvn/KWtb/kgB+FojlAWkZgjXvvZX3R4/983OKX3TSsR7p/GY1/cws+1zk55O+nwvnF6vob9U1aJxDsW3eb9oe922MfWH75ucxVjOwXN3eOf6Wa5e/ByvPr678va7q6OdXV3wP29avUS1f7vOZfzG8yP+Jb+OfrMbQI9knbt92zEaoUK1rm3l1HAFErBg0tIXFbeNLKz/fZbVs/HXbqoBnVXvX+bedUxqq5MfOz2fV+Ze/hOu/2go/k7TH7dPxHMf1KWvJ+xrvp1X9n3h7Uaven6Nc31nFz0zbNczXx9dFf+n4Gvd91d7W36rPR+MeiiHdqveprco/s4q/P1r+rjyWWnZvFNV1/3e1xzrN57/pP//6Vfy7Z/G/vWZVX5+Wv/+UUkqp01bFfwacfasC2D6ha7qsHzuwnVX6GIIyoM236RPYVgSwixUDhdk/zS3qXzW+wExDo7b2GC401tX/IVZUDB262pf13xbYpO2N8cVKjrsQbiT7tW5zhPOb9d9RzV+yNQ9fy4qzYJO2tD2Gq411H5v/sq0Ysna1z/o4qWq5drHm70/79e9qz9//WOV7seQL0PL7Z0X/jbFXXy4a66bHSO+BuN2/+rHp63iMPvfHqv3L8WfX8Pv/2WIQfajzS/afb7d4XReOEftvXOe2PrLjND5/i5+N5jVYbG+eX3Ls9NpUY5ptG193tZfH6R5/fn0XPtsrzi8G5GnbtBZD9XnbGudXb1dVbFt8b9eoti/3VSAxqxhQxWXxZb4Mm4qf818SlX/Jj1/80/Y84IrVFtDFUKGxTzKWepz1fnnlAUp5rJbZcLHy8c32rwKtvK3v+GN1BSOr2vucf9sY88AmbUvfv3qbZedfBrBFNdrTa3gM16e+hxqVjC3W0v4HaO96/45yfZe1pWNI74FY9Wdtdo2z9+C6avu1Ph/ZOeTvUVdN/4xbEcAdodrG37i/uu7/rvZYp/T8+3z+e72/9bFa7v1Yq+7PXhX/nloRrk6vT9t/WyillFKnr4q/Bs++VQFsn9A1XQ5BAKuUOq0Vw8qFAHDI+qvu2cpqQxWD4JZgtm91hk1q7YoBSR5Ip9XVvsmqA9i2totSp/n9OS0V/8fPRf474aKffwxYl/+Pv/g/OE8mnFdKKaVOos59ANsndE2XQxDAKqVOUzVmSA79z/iyGbhmspzuansMx6pqzKBKZu0pJYBVnVX+/XCB/05w/itnvyqllFJnrc59ANsndE2XQxDAKqWUUuoilwBWKaWUUkpdpDIDNlsOQQCrlFJKqYtcAlillFJKKXWRygzYbDmENIAFAAAAAM4vM2Cz5RAEsAAAAABwMZgBmy2HIIAFAAAAgIvBDNhsOQQBLAAAAABcDGbAZsshCGABAAAA4GIwAzZb1vYm22F7e1qTvYNq7VxX+yoC2EWT0VbY2qpqPA7j0aRqAU6az19/k9EoTC5XL6LLkzByvQAAAFjBDNhsGe3vpKHqftjZ3g47+9XLQld7FwFs0+XJKIySRGN3vBW2skBjMhqH3ernwzjq/iftpMd385XXhDurnw/jqPtzso5y//j8rTG+3XHYGi9uGa9Zy2oAAAAomQGbLdsc7E1WBqxd7TkBbFMeADXE2WX1zLykGmFHDEWStsax+uyfb1OHT/X60SiMy7Zx2J31lQQ2y/YvxHOL68bjdIwr9q1q3TDn5itfF17/uqquvDJce+UN04aHbgjX1uuTeu9tSVux/XvL9deEO2+7ptqmClxX7d9Dff5ttfQ9b3HnNUn/xbndXIz55oeqxkLj/OuxFx674cpy3Xuvqc9rvfa+ytCyPrfi/U9nSdazS+P5zq9Hv/undFL3d8XnL9m3qmWfv/hetrbF4+TvW8NudQ7Z7FkAAAAuBDNgs+Wi/bAz2at+btPVvkgAu6jxT6BbgoyVM9R2dxttbSHJqv3zf1JchjZZCFQerwx/pseJ29R9rNy/MA2B5v3H13ngdZQZgjFEvPaGeRpZhpV1AFtZOoO1CljLQLUMX6fbxWOmIesmZ8CW53PNfDDT0HQewMbwNT3/8jyS859u3wxd0+272ruU4Wtyw03f7yxoq4PD+r4oXve9f070/q74/K04v5kYoi7bLrZl73mDABYAAOAiMwM2WzYc7IXJqscLdLUvIYBdLQ9QopUBScsstt4B0JIZcLPAJp3ZFgOg6sCzAKhr/3KTeVhUKo5znAFsCLdVM1iXz+BcGcDWYWUMLqugM4aQxxHATsOvtuvTdwZscW5ZmNwQx5+Es7U7r5kHtPm5xPPMA9hV7avt9nteast7Xupx/7Rtc2z3dwufvyXKvpZv1xY8AwAAQGQGbLasxccKbG9PwrLfr9XVvooAtsviTLPlAcnizLOFwKWwcv9VAVpXANS1f+HYAqC+shmg0aYC2KM75wFs5/4nfH+3in36/C0QwAIAAHBIZsBmyyj+kq3tFY8V6GrvIoBNLQY4ZdCRJRmNf2Ycg5g6CEkDmqgMSdpm4C3Zv3y5YjZmZwDUsX+hXwC0fHxd8uehpkFqrbFNbK9nyfYOYJfsP4D4CIJmIDqd8VuPb+H8s9D2eALYeJ82Z1bWFt//6bZd73mt9/0XHff9XY7V56/f5y9eq7b1Uct1TJXHLO6f9FoBAABwYZgBmy3rxwpsZzV7zEBXew8C2FQdbKXVEmTUAUZZzRAkBizpvuPx9HUeuizbP2o8A7PepgqTytfxYNUxYnhT91n30bp/sT4dW7ltMo5GCNQxvlWav4Cq/REE09A0a4/ha70uBq/VNjF8jKFk/HkWTLbtP6D8HBuBaXoeWXt9HrN1yXmk57msfa6+T9vfm/z9n997bfd3W0CZbzPv58Tu77LF56/UMb5a7KdxXrU8iM7EkHjVcQEAADjfzIDNlkMQwAKcQTGobUlgY8DaGsyWOmbHAgAAcO6ZAZsthyCABTibGo8riDpmvwIAAIAZsNlyCAJYAAAAALgYzIDNlkMQwAIAAADAxWAGbLYcggAWAAAAAC4GM2Cz5RAEsAAAAABwMZgBmy2HIIAFAAAAgIvBDNhsOQQBLAAAAABcDGbAZsshCGABAAAA4GIwAzZb1vYm22F7e1qTvYNq7dzB3mTWvj3Zq9b2I4BdNBltha2tqsbjMB5NqpbjszveCqPJ5erV2fHYDVeG17/udWVde8ND1doB7YbwfcWfFN83DuFrxdsSf/6hY3x76mMe93GPWxznG4trcVi3FNevPs9YRznWWZO+x983qlb21Pf+iNf3KPfPUfdfqvgj54fqc6/qlqqpdMKfLwAAADav+Kp39q0KYPuEruky2t9JQ9f9sLO9HXb2q5eF2J6GrjGMbQtplxHANl2ejBrBaAxKt7IAdjIax5ziQotB7EYC2CpAKkOhKiw6ifAwhk8nFTy9Z5SFXusozjXuOwtgi+vxxnXHGa/hmsHjeVEGz8m5H/Z9Psn7o8uR7p/43hfXYKmBPl8AAABszrkPYPuErumyTQxY0wA2J4A9mjyAbbg8CaN6ZmxS4ySgqGfPxmPEY023mQe283WLM2DrtvF4PNsm3XdqN4xnbaMwmUy3XWc27c1XTmewlnXlleHaK2+oWqbS9vfedlt4b7ldc5vDBLDpuefVe/xVQFSGQkXFgOg92a4xoCpn8cUqfm6EjdX+aXubpQFbj/0bs0uL9jiecoz5vlWtFXBV55xWfv6r5DNfy0rOob528dzjNai3SQO/xvWt2+pzK9reWK9PxtonMKyP+56k3/J1dn7L3t96vG/MznFV38cdwKbXrNHe8/os3T86jvsnHqNHALvq8zX/M6j482ehDQAAgNOu+Kp39q0KYPuEruly0X7YaX3EwHRmrEcQHI/GIwhaHj/QOQN2twpQ632L12lIGy0LeqchZTOwTbeLY5sdqwqE1wlf8+D0zmua4WoMX+ft7eFrtLEZsIUYYKWBZhqw5cFYPuNxFoZWysAraa8tC9i69i/7SwKuOlBL94nH6BNILlP3mY+lt3jdkjEvqIK32XkVr+uQL/bZuC5x23q7eNxivzS8i+cZx9s3JIzHr/crVcdMA8pV7299vZdtX6tD0HTfdSw7bq21fY3rs+r4R7p/qjGU515VfqxVn68pASwAAMBZVnzVO/tWBbB9Qtd02XCwFybZ4wfaNB9Z0E0Au1oZiK77CILdcWcouiqAbYS16bFi4JqNZdlxlqtC1VldE+6sWsJDNyzMhg23XXNsAWx5LetgO6v1zmG1WbhW1SxAKrrIw6eFbSqrArRV+7+xR6B31AB2tn8cz2ECxK79ivuvNfyL+7XMnowh6Cywq48bA8Zq27aAcZl4bm1hZLpu6ftbWOir+HlVUBrHvqp9mVUBabT0/ul5fVYd/6j3T0MyDgAAAC6G4qv02bcqgO0TuqbL2vSXbE1Cv1x12SzZdgLYLnG2VzNwPU0BbJ++VkoD1rYAtm1dYZMzYNcSA6YkbOwTkEbLArCu/YcIYI8sDQLbFNesNfyL+7WEdccdwOazelfun72/C9sWP68KSqO+90RqVUAatbavcX1WHf+475/DnD8AAABn17kPYPuErukyyn/JVm5v0vJLubqmySYEsKkYtmb/rDaGntnzAyajZJvd+LiBLJA9qQC20Oi7EB9JsE4Ae/OVV4ab09w0BrDX3Fa9WGzPH1FQO60B7EKAlwRdUd8Zj8sCsK7929rjjM00YGuMMY4vm8V54oq+DxXAFtoC0lmAlx43ue5tAeMy8fj5YwHSwLHr/V3oKzuXuH/aHt+vdP++VgWkUWv7Gtdn1fEb1yAeZ437J+6bHjf2s/b5l3/mbbU+ngUAAIDTzwzYbFk/dqB8tmtSzXw1ef5rLM+APYL0F1zV1fKcwzqAKCsNX9v2T39JV3t7fYz0n+iX+yT9zELW7BeBjUbrPYKg8Qu48kcQRHHGa9p+zTXhvbMANn98QV3ZMTYoBkzpP09vC6dWbZP/8/a8PerqI29fCB+L12l73/DsOLSNPQ3g2s6/Mf4YIra1p+vj8apzjGFfGfLV23WI48t/iVYaGK669nU/scq+qjHESo/ROMfieOvouj+Wtve8Pn3uv6PeP41ruOb5R7vj+Z9ZAAAAnD3F18Gzb1UA2yd0TZdDEMCebctm0h6f25IAFk5WDAfzGbacJi3/SgAAAIAz5dwHsH1C13Q5BAHs2RMfO1DPgD3JfwZcPn6gnuUqhOWEHXVmJgAAANDNDNhsOQQBLAAAAABcDGbAZsshCGABAAAA4GIwAzZbDkEACwAAAAAXgxmw2XIIAlgAAAAAuBjMgM2WQxDAAgAAAMDFYAZsthyCABYAAAAALgYzYLPlEASwAAAAAHAxmAGbLWt7k+2wvT2tyd5BtTa3H3biNjv71et+BLCJ3XHY2tpq1mhSNQ7j8mQ063s0uVytXc9klIx/PA7jgc8BjmJ3nNy/p/zenYxG4ZAf01aP3XBleP3rXlfWtTc8VK1NXJ6Ekc8zAAAAR2AGbLaM9nfS0HUasrZlrDGk3dnbCxMB7JHEADQNPmMYdNgg9CjycaQmo3HYrX7OtY1/3RBr1fEJ4eYrrwl3Vj8fxlH3P+2Ocv+U9+t4vvf0f0ic0vsx/g+bZKzHKQaxrQFsIV6jE+oWAACAC8AM2GzZ5mBvshDAzkLaAwHsUS0En3HGWZp2xNf17LwlM/QaM1BHxfGqbaZh0jw8qWf6tQWtrQFs3ndVzeEtD25Lq8bf4/hdbr5yPntvPpsvCRwfuiFcW83wK+vKG6qGufoY0/Yrw7Ut27Spr29brbwmmaX952Ov6r23JW3F9u8t1xfnfNs11TbV+a/av6+e71/5ns1mdCezNFftX6nvy7q9nuXZef/2uX+6xt9ys9X3dGf/Ucf51Z/N9HizgHe27/x6zbZpuU7xWC3D7bx/0/b33nbb9H7JtlkVwJbjbBnP3G4YZ+cBAAAANTNgs+Wi/bAz2at+noqB7OyxAwLYI6vDnloesuT/5LgMaJIwJN+/DImy9kZosztuBkiV/DiprhmGzQA4D6BWjz868gzYOnisQ6XidR0y3nzlleHmJFcqQ9okfMqDpzuvWQynTlKf/pfOYK0C1vJcy2sw3S4eMw1ZjzIDtvP9K0PEapsqUFzn/i3v12SHsj0LJLvu31X3z8r+l3wW0vVd/fe5v+M+jc9G8Xp2zJYxtJ9PDDkX13fdPzF8nbe3h69Rfpym2HfzPJsEsAAAACxnBmy2bIjhasvjB+Ls1/r5sN3PiV0kgG2aBk5VeFlUI4zJZ9fNKg1i6vCjra07QKrF7drWR+sEpI0Aqtf41zt+q9uuaQ+PlswAbcyQrUOp1rbV8vcurWXXclF3/ysD2DpMiwHsNdPU9dgC2J7v33y7LIDr3L+4d/OwMtPn/l16/3T0v/SeT/pY2X/f67PkM1drjH/ZtmVfbee54v5J749avE/WDmDjGNtn3wIAAEAXM2CzZa2c5bo9CZ25qhmwR9YIgXbjTLk0ZOkOqBbEYyT79AmwoqVhVGG9gDQGwvX2/cZ/YgFsDKdawqaVlgRUg2npf2MBbM/3b3rfTsPHZkjXtX/38fvcv8vvn47jx1CzJVWMs3Lr1av77399ln22Skn76jC5x+ckvX/aAti2dQUBLAAAACfFDNhsGZUzXLPHDiwlgD2yPPiMr9N/kh3DoFXhTf5PoGOYk/+T7tn+1Yy9tuPl40g1+ojHTwPWtlmPa4w/Wn78npYGsNN/kr0qWMofUZAGmUPo039jm9hez3LsHcAu2X8mvo8tMzcLXe9feb827ofm9l37L7ZPj1HfQn3u31X3z7r9l+eThKpd/Xcdv5QErMuUwevK7eJ1WXx/uu6fvH3ZIzZWB7Atn/NUec2L+6dPGA0AAMCFYwZstqwfO5A/YqAtY00fReARBIdUBxdZeFE+UzV/XW9X1jyIWdVWqkKjadsoTCbTPqdBTx285ZUdIx1no61t/8WgpnOMS4/fJf/n19NKw8eo8UuKypoHkKvahtCr/zI0zdpj+Fqvi4FbtU0M0WKYFn+eXYe2/Rvq97H92i97/6bh63RdGZgm72MaJHa9/3l7kt933L+Vjvtnrf7zELFH/8uP3/75apxfrTyHxbGnYj/5vp33T3qfxLrmmmRWePvnZ+EY8RqsCFdjCN01dgAAAC4uM2Cz5RAEsMBpkgbJMVhtzHodym73LNkypG1Nb9ex/mM5YsC6vNuO2bEAAABceGbAZsshCGCBU6Oc4VoHiKtnAp+E6ezReXXlqwuPHFlD+fiBepZr3xC2Y/YrAAAAdDEDNlsOQQALAAAAABeDGbDZcggCWAAAAAC4GMyAzZZDEMACAAAAwMVgBmy2HIIAFgAAAAAuBjNgs+UQBLAAAAAAcDGYAZsthyCABQAAAICLwQzYbDkEASwAAAAAXAxmwGbL2t5kO2xvT2uyd1CtrRzshUnVNq2dsF819SGA7evRcOvoinD1VlHj26t1y9webiy2u37yaPV67onJVdNj9DrO0U1GozC5XL1gwcL1uTwJo9GketGiq72veJytrTDy5gAAAAADMgM2W0b7O2nouh92trfDTpqwxgC2sWI9Atj1XBofT3B6XMdZaXcctsa71YuLYzIah15nveT67I63wqrL1tXex+XJSPgKAAAADM4M2GzZ5mBvIoA9CZdvCtfXM1NHN4UnypXJrNetq8Ktl+vg9KaF9bW+M1yXB7DT2bOzY2xdFy5VLeuajBaDwpuvfF14/eteF6694aHw2A1Xlj+//nXXhDur9vDQDeHacl1VV95QNczVx5i2XxmubdmmTQwdt7aKMY3H5XJaWVhazQydtaezTZO28rxigFq+rmax5vtWtSwsbbs+pa5Zrl3tPQhgAQAAgE0wAzZbLtoPO5O96ueKRxAcn93rZoHnPCCdBqI3VkFduT4JXcvAdRbYznXNcG1tr0Lguq9oGug2Q95+dsM4Dzdrt13TDFeL1++9bfrjzVdeGW5+aPpzVIa0ScAaX8fwtnbnNe0h7TLTEHY+rjyIzB8JUG6/EMI2A9c8RO03A3bF9SnbVj26oau9mwAWAAAA2AQzYLNlQxW0dk523d8J22vMiBXApmLYGsPOehbqdeFSGYrOZ6EuBKdJaJs6TADbmD2bVRrK9lKGk8sD2DREnclnv84qmSEbbgvvXdrWLQaPjcB0dzwPIqtANZ/BunyWbHsI2iuAXXV9Cktnx1a62leJjzBohMoAAAAAAzEDNlvW4mMHtrcnIf/9W+1aZsmuIIBtisHo9ePrirq9+PmqcGNRaVB68gHs4rEO5TABbAxX15jNWoqzadecAbs0gC1GO+4TTM4ePdAegp72ADYyAxYAAADYBDNgs2UUfwnX9opAdW+S/pKuKqw1A/bQ6lmo108ebfxcO8kAdvYc2oXjH2IGbAwz1w5gp48UWNYW5Y8oKAPYa6rnF8zEvltmrhZWB7Dx5dbKYDLuPz/utJ98+8ZjDMqwtu06rLg+ZZtHEAAAAADnjxmw2XLx+a7TyvPVGMLO2teY/RoJYDNlCFo9czX9uZA+IqAMZatwtKzZc2DzX6KVPr81b+u5TcszZvtYnKWZPz5gWvXzX2uNX7JV1vwxA6va5toD2Gl4msxcTWaypmFkHHe9flrT4/TdP13fHr5OLZ3FGmfH+iVcAAAAwDlkBmy2HIIA9hyLQWRrwkhpyfWJs3BXXbau9l7KRyCsnu0LAAAAcNzMgM2WQxDAnm+Nf47PgoXrM8DsVwAAAIBNMQM2Ww5BAAsAAAAAF4MZsNlyCAJYAAAAALgYzIDNlkMQwAIAAADAxWAGbLYcggAWAAAAAC4GM2Cz5RAEsAAAAABwMZgBmy2HIIAFAAAAgIvBDNhsOQQBLAAAAABcDGbAZsva3mQ7bG9Pa7J3UK3N7O/Mttne3gn71eouAtjTZzLaCltbVY3HYTyaVC3UdsefCKPJs9Wr4e2Ot4r+L1evjs/lyWj23h/H8SejUTiBYZ5qQ3x+Tur9z7W9f7HvpffH5UkYbfLPi90Qvq/4m/z7xiF8rRhG/PmH1hnOUfen07n+fJz2+6drfF2f301/vgEAODeK/xQ9+1YFsH1C13QZ7e+koet+2NneDjtZunqwN1krdE0JYE+XGMClX1zLsOWYv3BNRuP4PfAMe7Y4h0+E8Rk9iT7XP78PDmV3HLbO6kVaYdX16/P5OTP3f8v7Vwb0cV3Rtuz+iOd85Ld9xfFXKnb5oTpUKsYQA6Y3rjOWo+5fO+z4z4GL/Pk4tvvnpPQYX9fn91g+3wAAXHjFf4qefasC2D6ha7psE8PWRgB7sBcmk73qxfoEsKfLyuAtzn4pZy7NZ/2UgUxcl3yJbsxwGhXHq9tm+zer8WUu3ybftzjeuGwrvqTHL8D1z9OteoszWLe26rp7uv/u3bN15ezW5PXWuPqfEJcfLMZR75dWdYwVpteluHaTetzV6+Ry19cuvgeza5uc33zd4gyvum08To+fXJs+17/Sdh90Hj8TzyU/9s1Xvi68/nWvC9fe8FB47IYry59f/7prwp1Ve3johnBtua6qK2+oGubqY0zbrwzXtmyz3G51/8Savxezc112/0U9rl/bdZvpsf+Jvv+ljvNPtL1/M6sCxnieWai2tiMGsGWoVFQMmN6zzmGOun/tkOP3+Vi9/6n/fBSbLbt/6hmnbxxPl3XdMm2eqvapazY7tTru942K/au2W5JtZ8eot6ur2L5hxfhmuj6/nZ/v+ho2/24DAIBU8Z+iZ9+qALZP6JouF+2HnTxs3d8Jk52iZo8fmIRlTyloI4A9feovuWXlX7RagoV0xlL+BXvdGU75P+ksvzTX+1df0MsvvWX4Oj1O3GZpULTgoPhy2Hx8wDSMrQPUafv8eNPZro3HDZQh7O2H+nI5vbbJ+ZfnlF2P8tyS61a8zs8vv861aciw/P2I+swwO8rxp+KX8CX93HZNMzwqXr/3tumPN195Zbj5oenPURlCJQFSfB3Dqdqd17SHUMs0QpPqfkrHv/L+q3Rdv5Wfn0Ln9T/B97/r/OdWvH9RMab2/aK47xHDl5XHXy0GVGWoVFQMmxoBVw9H3b90hPH7fJztz8eq+6cOYet18fUsZI2KA6bbvycGrrPxLIancdt4jHqbuH0aqJb9ZSFs9/3d9fnt0x7f3yP+GQAAwLlW/Kfo2bcqgO0TuqbLhjjTdenjB5LHFKw5I1YAe7p1fsFeCBrqL191LX5JXfoFu/rCO983O0ZsT7501//8M44x/wK+TBm21rNZa2mguhCu5oFsoZwZ2z3jtU3jC35lYfw9wps8OKj1OVZnwFE4yvFL5Xu5pJ/brmmERDP57L5ZJTMAw23hvUvbOqT3T6Vxnl33X6XP9avF468bUJ3Y+991/qlV71/UMca2+7zT0ut/iGMtUc8ezGsxhDqE4xq/z8fZ/3wskYalpeLnRgBbdBVD0fTebASwdZharIvPcY1mx2zZt6517++uz++hPt8AAJAo/jP17FsVwPYJXdNlbRqyts9sLduywHVv0n8WrAD2tGuZ6ZN8ae3zZbn/F+yir2zbhvQLcjxu9Q1w4Uv1Ui2zWaM0UM3D1ZbZrpcntxfn9GD8vru2tl9qtDIUWOJQAUOlT0BylOOXVgUUywKmGB6tMVuvFGcL9t2nJWBpjr/j/qusEzCVx1w3oDqp97/z/BNdAVPHGI8c0PS4BqfaUcbv87F6/x7XduOfjyW6AtjZ7NRKY/ti/coAtvDGbLbrYQlgAQA4aec+gO0TuqbLKP4Srjxgze1N0pmxLY8pWEEAe5rEL8NZQBi/aLZ80yq/JLd8OV38rdDzoLTW2Ca2J19k4yMLln65Tr8gJ8dd+FJdnsfizKyo+biBQvVM13r/Zrg6DWzz2a75LNpyn8Y2y/uPX1w7A+llX/oThwoYKquuf+0ox59aDFZmlgZM038yvawtyv8JdhkwXVP9++yZVde/eX/G9yMd/8r7r7L8+vX7/HRe/6XXdO6w70/X+c+teP+ilWNsuQ7r6nENTrWjjN/nY8n+lR7XduOfjyVWBrBFN7OANYqvi/8qXSeAvaVY15hReyhdn9+O9vI9W/x7DgAAUmbAZsv6sQPTZ7vOK38MQRm6rmxfTgB7mtRfzNNa8kWr7YtxoQwYG/u3fEmtv6AtaW89RjnjqHodv0FXx4hfjuOX6vjz/It1fR5tX5DrULWuZrhaB7LTttvDZFL/Iq5kFmz6y7nKyo6xov/4BX88no63rvkX/Lbr33ZeeU37qa9DrHKf5Do3QoSl1/+Yjl+J7+N87FH+z6OnVT/fstb4JUJlzf8Z9aq2uRXvf3ofxXEX70c+9s57eK3r1/L5WfP6H+v73+P8a4vvXzzkfN9Z5UFL7OOo4Usx9mXjOhMONX6fj9IZ/nysEoPS+pEAZWBaVP26Dk3Tbcrtql/Y9cZi/ezxAjF4rfaN+9X71CFsfA5suV1Saz2CoOvz29E+/TOi5d4CAIBE8Z+pZ9+qALZP6JouhyCAPaPOekCyIfkMq3MtBhzrJBQbEEOZi3wfrzz/Q75/MYA55W87Pfl8HP/n47Tr+vyubo8h+AX6Ow4AgEM79wFsn9A1XQ5BAHu25DPgBC39NWaOXZB/nnkaA+eL+D6k1jn/td+/45j9ykb5fPQ//3P3P9SOOPsVAAD6MgM2Ww5BAAsAAAAAF4MZsNlyCAJYAAAAALgYzIDNlkMQwAIAAADAxWAGbLYcggAWAAAAAC4GM2Cz5RAEsAAAAABwMZgBmy2HIIAFAAAAgIvBDNhsOQQBLAAAAABcDGbAZsva3mQ7bG9Pa7J3UK2dStuWbbOKAHbR7ngrbG2Nw271GgAAAADOAzNgs2W0v5MGqvthZ3s77OxXLwt7k51i7dzB3kQAewxiCDuWwAIAAABwjpgBmy3bxIA1DWBzeSDbRQDb7vJkJIAFAAAA4FwxAzZbLtoPO5O96ucWB3thsiqdbSGAbSeABQAAAOC8MQM2WzbEcDV7/ECua3ZsGwHsMrthvLUVRpPL1WsAAAAAONvMgM2WtRisbm9PQtejXdd9/EAkgG1nBiwAAAAA540ZsNkyir+Ea3vVYwdqh3j8QCSAbSeABQAAAOC8MQM2W9aPHdjOqi1nPczjByIBbLvd8ZYAFgAAAIBzxQzYbDkEAeyiGL5ubY2D/BUAAACA88QM2Gw5BAEsAAAAAFwMZsBmyyEIYAEAAADgYjADNlsOQQALAAAAABeDGbDZcggCWAAAAAC4GMyAzZZDEMACAAAAwMVgBmy2HIIAFgAAAAAuBjNgs+UQBLAAAAAAcDGYAZsthyCABQAAAICLwQzYbFnbm2yH7e1pTfYOqrVz+zvz9u2d/WptP6cxgN0db4WtrXHYrV4DAAAAAEdnBmy2jGK4Og9d98PO9nZIM9aDvUkjdI3br5PBntYZsDGEHUtgAQAAAODYmAGbLdvEwDUPYPPXbbNklzmtAezlyUgACwAAAADHyAzYbLloP+xM9qqfa9NZsbNHECy0ryaABQAAAICLwQzYbNlwsBcm2eMHSvs72QzYnbDGBNhT/Eu4dsN4ayuMJper1wAAAADAUZgBmy1r5XNetyetwer+TrZ+f8cjCAAAAACABWbAZsso/lKtVY8VyJ8BK4AFAAAAANqYAZst68cOzJ7vWlXzMQTZM2C3d4o1/Z3WAHZ3vCWABQAAAIBjZAZsthzCaQxgY/i6tTUO8lcAAAAAOD5mwGbLIZzeX8IFAAAAABwnM2Cz5RAEsAAAAABwMVyIGbDr1BAEsAAAAABwMZz7ADaGnevUEIbqBwAAAADYLAFsVkMYqh8AAAAAYLMEsFkNYah+AAAAAIDNEsBmNYSh+gEAAAAANksAm9UQhuoHAAAAANgsAWxWtb3JdtjentZk76BaO7e/M2/f3tmv1vaT9lPbHW+Fra1x2K1eAwAAAABnnwA2qyiGq/PQdT/sbG+HRsa6vxO2J3vVi3z7bnU/uRjCjiWwAAAAAHBuCGCzanOwN2kEsPnrMqRNAtkuy/q5PBkJYAEAAADgHBHAZrWoJVzNZsDGQHZ7e6fYsp/2fgSwAAAAAHDeCGCzajjYC5P88QOVaehaPQN2shf2JkcPYEPYDeOtrTCaXK5eAwAAAABnmQA2q9o0YJ2Efo929QgCAAAAAGCRADarKP5SrfQRA13i9m2zZJep+8kJYAEAAADgfBHAZlU/dmD2eIGqGgFrfAZs2r5O+loo+2mxO94SwAIAAADAOSKAzWoIbf3E8HVraxzkrwAAAABwfghgsxrCUP0AAAAAAJslgM1qCEP1AwAAAABslgA2qyEM1Q8AAAAAsFkC2KyGMFQ/AAAAAMBmCWCzGsJQ/QAAAAAAmyWAzWoIQ/UDAAAAAGyWADarIQzVDwAAAACwWQLYrIYwVD8AAAAAwGYJYLOqHexNwvb29rQme9XauUb7zn61tp+0HwAAAADg/BLAZhXt7zRD1xi2TvYOqleF/Z1Ge9x+nQy27gcAAAAAON8EsFm1yQPY/Z1JSPPYYoMwWSOBXdYPAAAAAHC+CGCzmtsPO0seQdAawLY8pmCZZj8AAAAAwHklgM2qTXzEQOcMWAEsAAAAAJARwGbVbj/srHrmq0cQAAAAAAAtBLBZRXuTZsBa/lKudMXBXthpzIj1S7gAAAAAgEUC2Kymkue/tjwDNooh7ax9nfS1MO8HAAAAADjPBLBZDWGofgAAAACAzRLAZjWEofoBAAAAADZLAJvVEIbqBwAAAADYLAFsVkMYqh8AAAAAYLMEsFkNYah+AAAAAIDNEsBmNYSh+gEAAAAANksAm9UQhuoHAAAAANgsAWxWQxiqHwAAAABgswSwWQ1hqH4AAAAAgM0SwGY1hKH6AQAAAAA2SwCb1RCG6gcAAAAA2CwBbFZDGKofAAAAAGCzBLBZDWGofgAAAACAzRLAZjWEofoBAAAAADZLAJvVEIbqBwAAAADYLAFsVkMYqh8AAAAAYLMEsFkNYah+AAAAAIDNEsBmNYSh+gEAAAAANksAm9UQhuoHAAAAANgsAWxWQxiqHwAAAABgswSwWQ1hqH4AAAAAgM0SwGY1hKH6AQAAAAA2SwCb1RCG6gcAAAAA2CwBbFZDGKofAAAAAGCzBLBZDWGofgAAAACAzRLAZjWEofoBAAAAADZLAJvVEIbqBwAAAADYLAFsVkMYqh8AAAAAYLMEsFkNYah+AAAAAIDNEsBmNYSh+gEAAAAANksAm9UQhuoHAAAAANgsAWxWQxiqHwAAAABgswSwWQ1hqH4AAAAAgM0SwGY1hKH6AQAAAAA2SwCb1RCG6gcAAAAA2CwBbFZDGKofAAAAAGCzBLBZDWGofgAAAACAzRLAZjWEofoBAAAAADZLAJvVEIbqBwAAAADYLAFsVkMYqh8AAAAAYLMEsFkNYah+AAAAAIDNEsBmNYSh+gEAAAAANksAm9UQhuoHAAAAANgsAWxWQxiqHwAAAABgswSwWQ1hqH4AAAAAgM0SwGY1hKH6AQAAAAA2SwCb1RCG6gcAAAAA2CwBbFZDGKofAAAAAGCzBLBZDWGofgAAAACAzRLAZjWEofoBAAAAADZLAJvVEIbqBwAAAADYLAFsVkMYqh8AAAAAYLMEsFkNYah+AAAAAIDNEsBmNYSh+gEAAAAANksAm9UQhuoHAAAAANgsAWxWQxiqHwAAAABgswSwWQ1hqH4AAAAAgM0SwGY1hKH6AQAAAAA2SwCb1RCG6gcAAAAA2CwBbFZDGKofAAAAAGCzBLBZDWGofgAAAACAzRLAZjWEofoBAAAAADZLAJvVEIbqBwAAAADYLAFsVkMYqh8AAAAAYLMEsFkNYah+AAAAAIDNEsBmNYSh+gEAAAAANksAm9UQhuoHAAAAANgsAWxWQxiqHwAAAABgswSwWQ1hqH4AAAAAgM0SwGY1hKH6AQAAAAA2SwCb1RCG6gcAAAAA2CwBbFZDGKofAAAAAGCzBLBZDWGofgAAAACAzRLAZjWEofoBAAAAADZLAJvVEIbqBwAAAADYLAFsVkMYqh8AAAAAYLMEsFkNYah+AAAAAIDNEsBmNYSh+gEAAAAANksAm9UQhuoHAAAAANgsAWxWQxiqHwAAAABgswSwWQ1hqH4AAAAAgM0SwGY1hKH6AQAAAAA2SwCb1RCG6gcAAAAA2CwBbFZDGKofAAAAAGCzBLBZDWGofgAAAACAzRLAZjWEofoBAAAAADZLAJvVEIbqBwAAAADYLAFsVkMYqh8AAAAAYLMEsFkNYah+AAAAAIDNEsBmNYSh+gEAAAAANksAu6ECAAAAAM4/AeyG6sknn1RKKaWUUkoppZRSSp3zEsBuqNreDKWUUkoppZRSSiml1PkqAeyGqu3NUEoppZRSSimllFJKna8SwG6o2t4MpZRSSimllFJKKaXU+SoB7Iaq7c1I65ZbbplVW7tSSimllFJKKaWUUur0lwB2Q9X2ZtQlfFVKKaWUUkoppZRS6nyUAHZD1fZmxBK+KqWUUkoppZRSSil1fkoAu6FqezOEr0oppZRSSimllFJKna8SwG6o2t6MWEJYpZRSSimllFJKKaXOTwlgN1Rtb0ZdQlillFJKKaWUUkoppc5HCWA3VG1vRlpCWKWUUkoppZRSSimlzn4JYDdUbW+GUkoppZRSSimllFLqfJUAdkPV9mYopZRSSimllFJKKaXOVwlgN1Rtb4ZSSimllFJKKaWUUup81bkMYNMQti38PA3V9mYopZRSSimllFJKKaXOVwlgN1Rtb4ZSSimllFJKKaWUUup81bkNYGOljyIAAAAAABjauQ5gY8UQVhALAAAAAGzCuQ9g66qDWKWUUkoppZRSSimllBqqLkwAq5RSSimllFJKKaWUUkOXAFYppZRSSimllFJKKaVOqASwSimllFJKKaWUUkopdUIlgFVKKaWUUkoppZRSSqkTqgsTwAJwsX3283erEywAAADanfsAFoCL7WsPPRZu/8I9ZcWf1clUfY0BAABoOtcBLAAX24MPfzPc8cX7yqUapuL1BgAAuIj+4K72OrcBLAB88Uv3h4ce+aYauOJ1BwAAuGhi2HrHNxdLAAvAufTIowfhrv2vlEs1bMXrDgAAnA+//uu/Xv1ElwsVwALAly89EB79xhNqQxWvPwAAMKzHHvtGeNvb3hKuvvqN4fLl5r9Mu/POfwq/9EtXhd/8zV8LTz31ZLW2W98A9p/2fnVF/Up47pnHqy1Pl/bxTuuuT75jrXFf+AD2S//04fDI1z4fHn7gjvDgA18ID3zli+Erl+8M9993V7jn3i+Fu+/ZD1+6dCnctX9PuPu+r4YXXnix2pN1vPjSK+G+h78V7n3oibK++vVvh9dee61qBRjO3fc+GL7x2LfUhipefwAAYLnnn38+fP7znw/f+c53qjVNTz/9dPjCF75QLvv6pV/6+fCBD/xV+Lu/2w0//dP/Ntx///R3NNxxx+3hZ3/234dbbvmH8Gd/9sfh2mvfXK7vo28A+/mPvyU88/RBa33p5p8Pn/vofzpSCPv+d//koarLqnF/46HPl+19x33hA9g77/hgOHjh5fDii8+F5154Pjxb3OTPPPd8eOrZ58N3v/d8+PYzz4f7HnkqHDz9fHjg0YNwx5fuD089Yzbtuh5+7DvhS/d9PVy6/I2y7ip+/vaTz1atAMO5576Hwjcf//ZC/cMdD4d//p9uC//tL3fXf//mT4c7Lj3Wehy1uuL1BwAA2h0cHIS3vOUt4R3veEd485vfHL785S9XLVNf+9rXwq/8yq/M2uPrPn78x/+38IUv3BHuvffe8Pd//9Hw+tf/RPjAB24Mb3jDvwmf/vRt5fpPfeqTYTz+sWqPbn0D2M99/K3h+Rdfaa3Le28Kd/3dL4TP/N3V4dlDhrB/9gf/Ptz/VAh3fWd53fBHr29sE/fpsmrcsb7x8J3hcx+7pjHur33uT8MzTyz+7ou2APbzj712sQLYx194Jbzy6mvhxWeeDd/95KfDY3/03nDwNx8JT3/7qfD0C6+Gex56Mnzn+VfCt557JXzl0W+H+776jWpvVnn2Ww+Hb+7vhQfv+kS47Y77whfvfijceenhsu748oPhM1+4Jzxy1z+Ex++5Nbzw9BPVXlx0r776anjowQfDl770+bB/91+GS/f8Wbjv3s+W6+E43Hf54fD4wXcW6v/2858M/8P418P/+BPv7Kz/4d/8Rvh/bN/aehy1uuL1BwCAs+7RRx8NH/3oR8Pf/M3fLK2///u/D088sV7e8e53vzv8xm/8RnjPe94T3vWud4U3velNxffjL5VtMWyNr3/3d3+3bP/t3/7t8Gu/9mtlW5cbbviz8O///U+GO+6YhrAf/ejN4d/9u3G47bZPla/j+je84d+Gj33s5mqPbn0D2E9/9O3he8+/Eq674TPh2j+8JWz/5m74kV/483LdA7e9LVze+0/hn/7mp8MnP3J1tcd6fnvyC2Wo+r1Xlte7fvuqcpsrfvH94eCZl8p9uqTj/rX3fjL8yrs+Ht74W7vhZ9/2wfCTb74xPPTYk+GRB+8Kt/3dNeX2D3zmj8O3H/hEuOfvp69TbQHs577+8sUMYL/94d3w5B/8UXj5T/40PPWH7w4Hf/3BhQD26995Lnz+rq9We5+8J+/8QHj3Lcv/uWZX+yY99uWPh2cfuyfsfXo/3Pb5y+GzX/xaoz55+33h07ffHZ55dD88ce+nqr1O1tDX67vPvhguff074RN3Pxr+6YEnitcvVC2n0YPhlnd/INzZ/3EvJ+Jb33oifOYf/za8/NJnwmuv/WEIr10fnnvud8I//dNfh+ef/1545ZVXLkAYezreiyFs4s+wrzzw9XDwxHcX6vt/6uPhh/71r4YvfvvlzvoX/+at5fZtxzmN9YXf+oGw9e8+3NrWt/7tv/23s0rXR8va2ipe/1W+8LX9sPOFjzbq7y99pmrdjNP8dy0AAJvxwQ9+MNx5553hnnvuWVrxMQE339w/0IxiqBqDzT/4gz8o63d+53fCL//yL5dhb1xOJpNZW/w5zpbt6z3v+cPwkz/5r8Mdd3y+DF0vXbpUha+fL/5b/ifChz/8oWrLfvoGsJ/6u3eEp597OXzjW8+GRw++Fx55/Jnw4DeeLNel9fcfeGO1x3p+9W1v7gxg3/Zrb2psE/fp0hj3E98LX6/G/vA3nw4PPfZU+O73XmqM+9LH3ha+d7Af7v+Ht5WvU20B7G1fe/ZiBrCP/va7wvN/9ufh+T//i2L5F+Xrp555oRHAPvTE0+ELX14xvfvBW8r/WzGvo4UoZzmA/dZ9nwqP3H9zZ33jq3vh8Ut71V6JhWt59Gs61PV68eVXw81ffDjcfOfD4bHvPhtefe218OyLL4e7Hvx2GcT2M3QIt7nQLz4P+OGHHw6f/exnwpf3/zLcd+/vh1de+YPwvWeuDy++9JtF+6+FF154R/iHj/9F+Md/vLH4S+xvqz0T1f3ygSUn8OAt8d65pTjL4zW7p1ru18PfagO/F3HsH7gzbOCt38ifYQ88+I3wxLeeXKj/+t/thit+4poyYO0SA9i4fdtx6vqnyQ+Era2tWf27D7VvN0SVY/l3f9va1rdiuFqLP8d19c+1ev2qite/jxi8Tj75/nDfo4f5n57Nz1D7ffZkuPMD/T6np/nvWgAANuPGG28sHw/woQ99aGndfffd4X3ve1+1Rz8PPvhgeOMb31jOgr3++uvLikHrL/3SL7Wuyx9R0OXNb35T+JmfeUP4h3/4h/ALv/AL4aqrrir+O34cfu/3rq+2COGWW24JP/3TPx3e/va3h6eeeqpau6hvAPuJj/x6ePJ7L5czSd/5x58K1/zBXnjT73ws/OJvfCT87Ns+FK78pfeX7Tf/1X+s9ljPVW96R2cAu/3mt4efedPvh5/8hd8u6+fe9M5q7+XScb/93beWY77qHR8Ov7/zj+X6uupxrxPA3v7oK+Fj+49fzAD28Z0bw2N/8O7w+J/8WXjsD98dHvuz9y3MgL33ocfDAw+veCZFHmSUoczhQ5+uL32n+UvhE/d+Mjz61U+U17acYfzia+HlYvlq9TrWy6+8Eh65/2Phm/v/UO3VLoZny4K1dQx1vXY+/ZVwx1cPqlehPO/aA998KnylqG7nO4CNoevjj38zPPPM98IX7vhUeOjhO8Pl+28O3/72H4Xnn//doibhlVfeES7d/RtFva34Q/9t4SMffkf47nffFj796cU/zKafvQ+ED7R93p68M3xgWduRJNfsWD/75ziAje/FCQTh63jw4cfCt7/z1EL9V//mg+Ffvv5tZQD7C2//u/D6X/6r8CM/+6fhf/6J3wv/7/+1+R8WP/Lvf63cvu043/7Ofpj8wFbY+oHfCXc21v1U+FBju+Hqzut+IGz9+79tbetbadAaxdfpunqbfL+84vXv4zQFsA2n4B4GAGDzdnZ2yhmuMYhdVl/84hfDn//5n1d79PfVr341/OIv/mL5nNc4IzavGHxub2+XM3DXEZ/x+sM//L+Evb298FM/9VPhN3/zN8t6/etfH/7Fv/hfwv7+l8PHPvax8LM/+7PlYw5+9Vd/tRzDMn0D2H/4298M33nmpfDwwffCQ48/Ex765jPhwceeDl8r6oFvPBW+8vUny/aP/Oc3VXus56d++frw2a88GG7/xB+X9dg3H1wIYP/tL/522Pm7O8JffvSfyor7dMnHXY65GO8jB8+Ebz31XPj0zn8It/7Jv56Ne50A9jOPvBg+fMeDFyeAvf2zH54FsM89dlA+//XR374+fPN9/zk8+chjCwHsP+1/JTz1zIpfHrUQZMQveIcPUs5yABuf7fr1r94aXn7ltfDA914Lv3b/q+GGB14Ir7zyavjMnQ+Gz971cNn24H0fKx9XsMpZCmDjDNc/u3X62wRj0PrevXvCJy99I/xN8cH6w49fKtd/5v7i09Zp4BBu4P4e+Op94eaPvS/cfvsnwquvfjLce8+Hw6uv/efw8svXhdde+63w4Nd+o1h/bXjq6V8Lz79wbXj2mWvDI4+8PbzwwluKv8TeWh0lUX327my5V+L7/oHiL6Zbjjs0ST/vC5/9o1zPgd/7CxbAPvL1x8N3vvv0Qv2f//V/Dj/60+/sNQP2x3/2N8rt245z12//YNj6gd8Nd7W0barKMb3hI61t61Qewtbqtnz7torXv480gP32Rz46q6cefjh857bPlD/HZTsBLAAAJ+uGG24In/3sZ8P73//+pfW5z30u/Mmf/Em1x3piCBtnqL7tbW+bBaWx4jNfYzi7bvh6662fCD/0Q/9T+MQnPlF8D789/MRP/EQ5k/YP//APyyA1vv7hH/4XZRhbr48zbv/Df/gP1REW9Q1gP/Y3k/DEUy+tnAEb2z+00/1YgDbvfOebwrve+F+G3/m5/1NZ7/rF7wv37O81Athf+c0/Cbd/9cnwpcvfKuvt1/9Ftfdy6bjrZ9e+6/3/GB7/7nPh43/0o+Ebn702fPGv3xA++fd/VG6/TgAbn/96xS//1cUJYD9922649NCT4bFvPRee+t5L4WvfeCbc99VvhXuLdXXtP/DdMoS99OB3w133d8zcWRHCTL8A3ll+4UtnxpXrl/yz5fpL4/SfT08rDZfyL5Xpduk4Fo8T+59++Zy+TsKe8stly/o1ffPSJ8LDlz8ZvvrMa+Gt974c3vGR+8IH7no8PP/Cy8W1fjE8/exL4aWXXwtfu/fvw6Nf+vtqr3bLAtjG+TYvXOs5NK5XvU3+OttnXX/xyfvC7ZcfD48/9Vx4y1/dUT7/NT6C4Jq//kIZxEa33dtnBthiCNd6vvGey8KAcruqfek1KjTaymr2t+rejJrt6wUSzzzz3fCBm94TvvWt3fDKq78f7r3nfeG553+7aHlHeO21t4X77397eOWVt4SXX/mV8PKLbwkvvvgr4YXn31Js85Zw6ydbHjJef/ZaP4NxbPVybtm1Wfy8LL//Zrtl/ZbHaIwj629VW1nz9yK2Nfpv62u23/wcV/XXsHDN5g57DzT6rneK/cy2na6vr3VtVX/1tumxZ+1rfH4f/cYT4btPPrNQ/+WP/kUY/9xvlgHs237vE+FNv3lz+IW3fjD81Jv+MvzEL/xp+N9+6g/DT27/cXmMn/z5Sbn94nHuDr/9A1vhDX+br2/Wl2IgmjyeIN2+bHvDbvjwG1rav/y74Qdm+/1g+O0vZ/vN2tqPWb9Ojx3D4i9V6/tUWwgb17Vt21bx+veRz4D91p++vxG4fvumj1Q/tVk/gF11f832b7mHAQC4mOLM1k9+8pPlcll96lOfKn9Z1mF85StfCT//8z8/m4Va17XXXluuj7Nr1/HP//l/Wz5aID7z9fbbPxf+1//1h8OP/diPhd/6rd8qA9cY9I7H49nrGK7+638dnxd7R3WERX0D2N0P/nZ4/MmXwgOPfS989RvPhK8++kz4ytefDpeLuv+Rp8Jff+jmcMP7/3N43x9Pn2cbzy3+K9YYYHd59dVXwq9f9f3hD67978JDD99d1nve+t+GP/rV/2cjgH3H772vfEzBI0+8WNbb39X9aIjGuIsxx/E+8Oh3w0f/4EfDo5+9Nrzy6PvDnR/8qfDpnZ8O+zdfEz71R/9TeP47l3sFsJ9/7LWLFcB+4tabw3dfejW89tJz4bVXXirXPf/yq+HZYt0zL77amAF739ceDY90fXFcEcKUP7cFXGnwUYYI2ZfG5Evg9Etly5fC6udl4Wx+nOkXzKyfchyHnBFUeaa4qYv7uPTY3beE2++/K7z1npfCOz90dxm+3vvA4+GWz30l3PZPXwuf+/Ij5bNSv3rPx8PX7/zYdKcl4ngXArDiWs/HmX7ZXn4O82vSvI6r9lnX9R/dDw88/nT4x/u+Gd78nz9fPvv1awdPlz8/8u3vlY8jOFQA2/t8k7al+6TveaUMFla0t96b64Wuua9cvje8/PL7wmvht4q/BCbhiSd+I7z26jXh5VfeGva//Pbw0su/Gp5/7prw6KNvD889d2147vlfDY89/tbwT//0ieoIidlnrz1UmZ5/Mt6ua7Pic1cqr0fzeLNQpqj8fo3HXPn5XPFeLNz/s3Otx7r4Pqzqb0FyvNTCuPreAyuu7fQY833ScfXrL3tvy+3X+/w+9s1vh6ee/t5C/Rf/6r3h321fVwaw33nyufDt7z4bnvjO98LBt58Jjz/xdPjmwZPh8W9NHx/yhl/6nXL7xeNcCr/zg1vhpz6Sr5/X/u/+YNj6wevDfr3u7uvDD2z9YPidu5P2rfkx5tsvP3avY/7U381+/oHfvdTct2rrqmhZANu2fVvF69/HRgLY1vsr2z//7AMAcCHFma233npreO9737u0YkAbZ5KuK4avP/dzPxeuvvrq8Na3vnWh4i/eijNT1wlh/7v/7p+Hv/mbD5Wh5v/8P/9P4f3vf18ZDv/Ij/xIeOc73xmuu+66WcUw9kd/9EfDZz6z+pfh9g1g//YDvxMe+86LS2fAXn3Nb5X/Lf7Od7y1/KVlMQCOr//yL/+yOsJy3/rmV8LbXv9/DB/88B/NwtZ/+PCkXPfNbz02W3fN704D2Ee/9WJZv/o776+OsFw67qt/9+/D7ifvDx97778Pj/zjr5bha6xXv/mh8Oq3bgmvPXlHeO1795UB7Gf/+IeqI8y1/RKuCxXAfnzv4+GV114NT99/c3j24dvCCweXwkvPPB6efeY7CwHsnfv3r378QJSFMGmYsPgFsD00SMOWti+Ncd1i+/RYjb6T/heOkwcuC4FOS+DZw+986ZnwzvteLkPYe7/xeLj20guz8DU+buC7T78QnnzmxbLijOMXXno1fOXSXnj4ix+tjtCuNYCNyi/C8/OtT3HZOUyvwy2LYVrhKOed+st//Eq488FvhXsf/W546wf+KTzz/Evh3f9wTzkbNvrs/Y+X67plwVW06nyXvdet+7Tde2l/Xfdme/u67rnny+HZZ99d/PSOcPD4O8NXv/qO4i+at4cv3/W28I3HrgnffPxt4f773h7+4s+vDR/8wO+F/f2Ph/vv/1J49dVXpwdI5fdw+XN6TvHnLDRZdT2zk4vr0ntjYZv0M1X+OZC+d6s+n13vRTxcdl/O+lr2Pqzqr0U69pn2Y/e+B5Zc2+n6tgC2q79020pyrLKt6KdxnZZ4/OA74eniz/K8/ov/7d3hZ//T9b0eQfBzV/9euf3ice4JvxtD0t18fV3t7R/5qa3wg797T/nz3WUgevO8/e53hR/c+unwkbpta77ttNY55nTb2ezXun7wXeHuZN+2itrC11psa9svr3j923zgzr3wma/M/xnVpmbAzuT313zDxj0MAMDFFAPWT3/60wuha1oxwPy93/u9ao9+HnjggfIZrP/xP/7HMmiN9aY3van8pVj5urhd30cRfPzjHw8/8AP/r7L+4i/m//w+/sKvH//xHy/D1FgxjP2X//Jflo9Q6NI3gP3gX18fvv7tF8N9X38m3PvI0+Heh58O9zz0VLhU1N0PPhk+8Ld74bd+a1IGr/UvGoszce+///7qCMtd+tzvh1t2/u/htg/+f8Jn//a/L+sfP/T/CZ/4y9eF/S/+xSyAvXry/vBbf/yR8Gu//6Gy/tNvdZ9fOu57Hn4qPPDNZ8M99+6HW97zI+GlR/6iDGC/8blfD5/+4x8On7vhR8MdOz8RPvun/zI8dPufVUeYu/AB7D33XQ4vfvuB8NTXbglf2/+H8OSlvwmvvfx8+N7dfx2e+d7TjQD2jrsuhZdeLt61VVqDjKnFL4CHCBwK7e2rw5CF4+TjbBl37KcRnPTw/s8+XAauv37fy42Zry+98lr42G33hr3PXg6fvOOB8I9ffCjc/uWvh+defDXcf/ct4aEv3FwdoV16zlPT852Pefm1TM+hvA7Fl/IPFNsuC2oOc96pux76dtj59OVypmucBRsfQfD8S6+Ev/3Cg+UzYeMvIesnDQy7zrcOG+L6OnRYtU++f5QGFm3t02szvW7t7et44fnnwxfueG/46ld+I7wWrimuy1vCM8+8rai3hhfKRw68JTz0UPy/X38ZPnv7R8Ljjz9S7blE4x6uzuXOfF2/69n1uZsdv34ZZZ+h8j6aHWPV9Wprax6/2Xdh1tey467qr0XL53/ZMbrvgen6Zde2uLgnEsDWyuve8fl94ttPFn++P7dQ/+WPvCf8/K/8fnjjtX8Utq/5w5X1H978++G//vE/bj3O3df/YNj66Ztb25753r3TsPTvmut3f3or/OD195Y/L+x/KQawPxN269dFxe1jcDo9zjrHbN+2T6Xha/06D2Tj63y/vOL1z33ha/tl2Pruz3ywWhPCuz59Y7mutn4Am9wbPe7xVfdXo00ACwBA4Y/+6I/KZ6n+6Z/+6dKK/3w/honriKFmfPZrDFhj/dIv/VIZvn74wx8Ob3jDG8pfvlW3xZ/j4wj6euGFF8J3vjOfEHHTTTeFH/7hHy4D3be//e2ziqHsFVdcEfb396st2/UNYP/6xt8PDz/xQjmT9O3vubWcTfoLv/634Q2/+oFyfazf/6M/KfuOAWyc5RtnD/dx8x/8X8JTD7wnPPnVP2zUdy//fvjou/+vswD2jb/+/nD/U6GcBRvrF9/RHcCm445j/vAn7i9f33Ppy+HWP56GsPEZsI99o/vbwYUPYF966aXw3f0PhW/c97HwN3/yjvDcI7eE575xZ3j1e18PT3/1lkYAu3/fA+HJp6f/BHOp1i95U22hTrku3b78YjcPXsr2NOhpa6+OuXCsYixLv1jm45y9Lr6Q3jnfbiH46SGGsPF5rzF8/dCXHi+f8/pscR2//VTxQY/19Ivhu89MK66/d/8T4cE7/q7au93iOOKX6yRkieOfvV5+DvPrMP3iPT/m0c87FX/hVv3s19RTz71Uzo7tpfEerTrfqXLMH0jvgdX7xO3TeyC/1xbup7Z7r7H/nWsFEi8Xn73P3/7/b+9ef+zLzsLOn3/Eb6KMNEpe+l3NKEIMjgwaGPFiNAQUJSiiJgoGnDEh0hgSHMIAo4lSIRk7gSRjohAswCRiSMUX7LYNE2Iy7Wna4E67bHd8SRu7fWn31XYb71nPOmvtevaz123f6pxd9f1Iu0+dfVnrWZe9z95Pn6rfL3aPPvq/d6984+92X335p7sP/od/0L3/kZ/tvvwl+dMDP9V96NGfdR9Y9b/L4g36K7ZH95FOyJT7xvaFbbutyxutG9Yx6k+3/7yxOM7d+N6WG8ehVN9Iqj3OqIymOVCZq76M2+SVLyNsbKpPN6Iva9r5K/8Q1Isvvjxa/s37nuguLn+p+2//57eG5f/q/hu1yPvbbb/U/e5jn0yW8+KL7+x+RL5V+iPvVOue7N78ba/v3uF+fuLNr+kO3/aW7om47Ym3dN92eE335ieO7/12fazfLse6Mt58u/4dkmB985O3xzSWOdr3Ha/vfuQd4efCEpOt8We7Xuj1uUX6P0USrvKt16f++FP+m7CSfH33R4YJV0nCimf/05Pdlx4p3JBlzkc9L8bzNze/zDYzhwEAAPAwSQJWEqzyZwByy5x/hOvq6sp/s1USr/KPbUnS9dFHH/Xbbm5uute97nU+6Srb5VX+VMEcb3/7232S9Sd+4if835mVpOv3fM/39O9/9Ed/tPvu7/7u7sMf/nA4Yqw1Aftrb/uF7j9//qvdRz71XPdHn/xK94f/+dnuw0892z3+8S/79f/23b/b/Z2f+rs+8fqmN73Jv8qfQfj0pytfxHLe/tN/tvvso2/qnv6Pb+w++Pa/1P361bf5n2WRbTEB+4af+RWfeP0f/+avdJ9//uvd63+6noDVcUvMH/0vL/j3stw8+Yfd7771L3bvfcv/0H326U+GI/IefAL25Wc+1j1381vd85/+7e7Rd/+z7htf+ED3xT/4te6b3/ha9+LNOwYJ2E88/Uz3+BOf6L5pkmoDmUSGGD3cBT754h4Mj4tK8jjHY+I/3HVchs+HwzIHZan1o7ptnPp9SJj4JdOWGknC/vrvPN798dM33QuuD0vLEx9+f/eJ35+agA1t6tt67KO+iZk2DPvh+EDe/w3LFdqtffyPv9K947FPdb/9+Ge633nis/7vvv7+xz7XvZL69XmtjyMxF2J8tr3CJwUS8yN7TEjkhe2/8dhjrj+GdZbmptDb5ySsX3jh+e4d7/iX3Suv/G/dR29+pnvqqZvu//uDv9e98NxP+cTsb7/n73Xvf3/9Xyb09BwWoySJjPft+1LfHOdJ/rxLzcdR/c6xjts6c+dnfSziXJXFrR98s3dYro4rX5+h535YYjmDMhrnQPO8cyuPfX0bW6k+u69bcTvGE87fZ7/yQvfyy19LLp/53Fe6j3/mS93HPv2l7jX/y693f+Z7/mG//Pk3vN1vk+Wzz3wlefztctO95TXqV/wPr+ne8uTt9ne+Pr/tybe8pju8/t39+5ef/Mfdaw5/vXun/PzOv3573Gv+cfdk3MctU8oc7KvrKiySXI3LlG12kf7PkcSrJGH/7Yc/0H34U0+GtUfPfvzj3Zfe9d7uC7/8az75Ku9HMtdPL1wjb+eXvj6U59dw23AOAwAA4GF6/PHH/d93lb+jmlskSSt/z3WKz372s90P//AP+0SoJF/tP4Ilv5YvSdiYnJVE71Rf/OIXu+/4ju/ov00rydbv/M7v9GV+13d9V79eyv/e7/3ecNRYawL2rf/873e/8q9+Mbv8rb/1Rv/3bn/sx360e9vb3tb95E/+pH/f8vdz/+Ub/nT36Q/+ePepf/9j3Yf/3V/tfv3v/3f+Z1lkW0zAvu7vvM0nYOP7v/amt4US8kpx//4HP9DdfOT3uo8+9u7uM59+KhyRl0rAyvJgErBffuK6+/ofv6d76en3dB/5f365+5Mv/k73/Md+q3vpmZvuT15+dpCA/cKLr3SPfeQT3UefavkHlPDU//uu7iOPf6B78iMfLC5/5Pb55Id+OxyFh+bT7kL1B4/96+53PvBr/m+7Pv7Y+7v3feD/7D7/+c92r7zy9e5PvuGujHdslIjRRold7M1zz73YffWrXxstL7z4cvfav/Eb3Z/5C/+ounz73/jX3VeefylZDkt5kf4HAAAAkPfss892jzzySPf000+HNUPPPPNM9653vSu7veall17qXvva13Y/+IM/2L3+9a/vvv3bv93XJ+Rvr0pyVr5d+wM/8APd93//9/v1Ka0J2Oee+0px+Rf/4pe6n/u5n+uTze973/t8HL/5m7/p35f8wl9+Vfep3/vx7qnffUP3xLtf173vl/8n/7Mssu3H/o//2y8/8BNv63+W5a/8eD0Bm4pVL88//1y/1Dz4BOwzj/1q97Wn39P9yZf+fff5j1533/zy73XPfew3u+c/c/wjxr/3H/+o+43f+sBo+dwXSt+vgvjSZ266jz/6nu7jH3pvcfnEh97TPf+FeRcN3E/Jf2TrDpUSsMXkLHbhhRde7r72ta+znGiR/gcAAABwWu9973u7b/3Wb/WL/Kz9/M//fHdxceG/DfvUU/lvd7YmYLf06L+56v7p9//X3S/+5f+q+4W/9Kf75Z/8xT/Vve+t/2v3zJde8MtHn/p8/3Nc7tKDT8C+9IWPd5979F91n3/sV/vlcx/61e4bXzsOhDwsfvkrz3fPv/Bi91xcnn+p/o9xAdgtkqz320svf7V7xV3DWU6zSP8DAAAA2L9zSMDuxYNPwAIAHpavfu3r3Te+8Q2WEy3S/wAAAADwkEgCNrWQgAUA3EuvvPKK/zMXLKdZpP8BAAAAACRgAQD3lCQBv/nNb7KcaJH+BwAAAACQgAUAAAAAAACAzZCABQAAAAAAAICNkIAFAAAAAAAAgI2QgAUAAAAAAACAjZCABQAAAAAAAICNkIAFAAAAAAAAgI2QgL1rN1fdxeGiu7oJ70/h+rI7XFx1m4ZwV+0ctOWmu7o4dJfX/s2KrrvLw6X7r3MO43cvbNinjNH5GoyNmgN7V5tzd3Kd2pNKHyw5hzn/757M71Um9HFeHA65ZaXrhZ8jqfLjkq/n+jK1f2bRfSJ1bn3fBQAAgLNGAvauncPD4eIEbObh2bdt5aRaLdZVExuSEEo9PN19ArZ/yNONWTxuc4QH4vmdmnH+Cdh+DKp9nps3kWxPxTNONqzezSeTSKRIPw7GRs2ByXJ9Gmx2rmTqrc25ydep45y6yBbo+Dpv+zdf3rGs436FGAcy9Q/qTJVlj8v0V60Pms7hTNlNx94vN1cXt9cdmWvZMarNhTnjnjjXE8twrDP1+LJyYyfbUteLXFmFtkp78pMvU0+O1FPfX8ZoHGOOjr1UdmG/wZjNvd6k+1A+G9vbAgAAgIgErFd5GDw7C+NdnJzI1O9v+Kc8uDSoxTo5sZERHloHx7p1x4eMtgesdvU45QFntH3xuM0gY+oeiFcf11X7dMPzt2X+ZefNrfTDt8StEgP+/MklH/amZUyWzYFiQmPDc2VaIiUYxFPqm+M2SaZcFpMcx8RIX4afh6m+PJbXl5PdLyrVn6jTtCl1XH7u1+ZH3ayxuG/8NTqOgxsjPe8H412aC3PH3XHvh/tLWaUkaml+147Vc7dU1nFbuq2O9Fl28tl6alquY8c+jMnQ5DI4l27L8/8jMBlrab/EmCVjnNuHsu2+fFYBAADcHRKw3vFGM3s/fnYWxmsfoCbL1L/bBKx5WBlpecCaoh7nuSRgY4IjGc8ia/bphudvsc9r80YZJEkiiXv4ECv9PHwI3quWMVk4B5J9Gmx5rpTqzZlxnSrPBdt38j6REBldk9vPlVH9oz4dz18xOi4791c4Z+eMxT1TvjaredE4F6aNe+ocTs8LKz2/jzElE5R+SV8vknOu1FbZnu002TddT1r9OibxDZOo7pjWedt6LRvsZ2NS8yBjch9Kfdk+BAAAQMrDTMD6G8t4Iyk3puoGf3ADe7v+9sY03oSG7X7/cHN7fSxX9vdlyw2qPX5wUxuOu0rsJ0Kccdu8eIU5RhZ9Q+/rqT8w3TI34pFuW//zcV8djyT12uJ2Rg8fpbaYsQnLMM5EfdUHHDnGtivKxS/rU2M73D9XrzwMjfrXxpmcH5X+Th6TI2WFeTHqo1pf17bL+ol9mow90Z+V8oYP8bKtcA6W5kZt3vg44nkV+8NvCVT/BrcPwab/+npKbRF6e2hXf2ymzOycCH3Tcl0bSbXXGYyNlN8w7o6fw/22eEymDrHpuZKod9AuMWyLX0bj4N/c1mMaMkqIGPF/jnjSXnO8l1hfKzca7Tea7+n+H5ef2i+uG/ZTv89onuTO0YaxSI7j8TgdZ8vYD9t2jL2ve9Q/UXpeH+f0bZxS9u1YpY8Zk3YMryEDElOso3EuTBl3acPl9fF9jDW9jGNM1V1uj2zT59itZMyltprxHS/petKO8/PCzKee1DWaF+6Y5FwZG8ed7h/bB9nrQ6aMWX3Y2AYAAAAcPaAErHpIGN003j5QHB1vqG/vRfX2WI6+QQ8PS7FcuXGV94Mb3rC//jkel7wxdvVcqjh9mfG4KfEe67jdV4rK90Hbw4fe1y6JdkrsfX02tlzcweDYWltiXCr+Qb8djx88ZIhBHSlyXKJdfn2537Nja9tpSLtG220/5uaH3a+vq3BMyqCcdFvzfV3bXurTxBgVY9dtlLeV8kZx5MbJGfSBUdomUmUNBlXiVtsTc2TQf41tua0ilGHmwrBMty7br6Fv4vF+m+0rXZYW67pdfNyjsdE/j+eXr6pUz6hPA1mv2732uWLrHbVLj4PsrvpR1+PL1e2+NUh2JBwTeKZ/Db+P6Z9audFoP99G1S4f+7CdIlm+7a/QB6M+je8T/Tmcd4XzanDsumM/6E+33v95lhBIul8L89rpjxnEUj5mSPaNbTXMeLXOhenjLvHpGOR9ek5r6f4qHWvruWXLqrZV2mS238rXkxbHS47T53mJO6a0X+jz0fnl16v+ye3nZK8Ptoxgch/6dk/pJwAAADyMBGy4Sc3eb/sb7vEDhl2ON55mX88+MBXe+1jiTavdT8oe3hgPb6LjcRPiHTzYBal12tT+inTbcu3U64v9HOhYq21JxaXW5dqdW9+T+BPtkuOy8ZfGNtN/ijzojLYn4kzPj9x8O0ofM2YfyIbvK31d3V7o08JYNJ0P1fJsHLlxckrxVGIdU232jnHctsfGYfqv1pbU9sG6RJlBdR55tfdapq7BfFT9IXH29d8ut+eSvE/VpcrQEn2x7rli6q3NudQ4XEqbh/Vp9vwb8PXZsUj0t9RrVhbLVZL76XFy7bm6HI9Junw7Tqn5odaN5omuR/azbc+MRbDa2Kv9rn3bXRl+XG1Mge4vtdz2j8Qg69Sx1WMUicfONecYu4mncS5MH3dpu+67TF8Y6XlynAO63cNlOEbRqKxaW6XfzPZbtj01w/ln+17qTbclsSTG0h+fWG8N9vPzVI/BcZ5lm+xM7kPfT/VxBgAAwK2H+Q3Y0U38cVt/ryk3ntkbXrOvpx7kvML7wYOe3U/d0Pr9zANDf9yEeFPbkvuX+sdK9YGjYxzEK1Ue2yIPJ32biv185B9mYkXVtqTiUuuy9dlxsGR7ol3F+Atjm4xzSPrLbh/0RXF+HI8f9XflmCGJP84HvcT9K31d3T6xT4uxm7qq5cn+cSxK4+RMGuO69gdY0yZRa0tq+2Bdosxiv9r21d5ribrEqPzKuA8cy7SJpWGfHt3FuTKoV29vHIeDG7fUN9GiVLuiQfuC5P6jWDLjklCq/0iNn5I7brg+FYdaN+hvO89kv8Ic0MdWxjEe1z72sW4Xk+/X8F7+TEdq/lbntbTNzOmmcyEaj4G0yc4Nr3Eu5MbvVqzzePz4MyKzmDal6xm355bUl942KqvWVhnTVB95+XrSEjFL+bVxnzTGw/medrtf8/VBmdyHqXYDAACgiL8B66VuLIcPJteX8UbT7ivsDXLh/eBhzu4nZYf35ubX31D3x02J1247Hju4sfYx6ThqUn3g6LYN2unIe/dQczl4cC7FLY713D4U1NoS3qsCh/1mj7/urkLZx/1MH7gxONYtx6XaVYpftmXGNsSpj7PkYWi43fRFcX44qf6uHaPJvqNtur21vm4Zi/BzsU/DGE05HxLl5R8sS+PkmHqtYxz6eMcd4+vzcZhtflxieaauAdMmr6Ut+pgwBoP6TJnFfrV9U3uvpeJ3RmOTG3e3Jp5L7pirfn2i3EGfiuM+m58rut5RuxrHwR+X6CdnlBDx+4YY9c+eqnOwzfSXaVfJ5IRNkD1O4jJ9kL0++Dbo/tRtlWP1e0eXrY/dYOzlvfzpgRh7fN+32dcfyyvMa//zsa98HX2d5WOGTN8M+s1qmwtzx/1WYnwSkuVITLrhA1Juum3jsiptlX6aUU+ajMGU/YU7JtH3noltMDf03Grdz1NzarTtaFYfTm43AADAw/YwE7AJ/ubV3aAOb2Dd+7Dc3ueam1LPPASV3g9uWu1+UnZ8f6wn1n/hHsD0zW57vI7cOPfbXPmDf5hnjlQfOLpto5vz0B57UCZueRjw6+z+xbaEuFxf3e5jHhAG9Zltg7Ld0tct45RpVyb+4zG5sZXDzPgZ0v5yX5TnR7990jG3fJ2DY49u19f6ura9tU/j+nLsg/605bmf5OEzHjuOIz9Ofk7UzpXcvPFx6LKFLt/UNRD67zbQoNQWZ9B3ruzkP8Ll3wTHdbG8Yb/avqm91zLxD8ZGjlfxD2IfHtufA7KMC+378W7Pldt6h+1yWq5TtzuHMR2WL20ZJETsfDLzri/P7jfoV9uGvFH9tk8G226Nj4tUf8U+yF0fBv1p55kuJ1LrBseamNcY+9Cf5f6272/Li8f5uWrmxPDaMT4mRcrpt9trkT1+UK7uh1tzx/2W7G/HZ2xcT+l6Isz1QknOuVJbTf+Ol3Q9afm48twxhc+V/vPMxuLjvu2j7H6i9foQTO5DKb80MQEAADBCAhY4Q4OH6rN0fCjPx1jbvhPykFlLwE7kH5rvqmM2iP8c3WmfKn29PlExNQnz8Gw5Tg92LKS9Z3WOtyVgR9y1KpXc9eMak4BrzR3ps2xZEv+U+bN+Avb8zRxjAACAB44ELHCGJAG76gPn6u5/ArYfg9UflOc8sLewiQOpp+Uba/fBVn1ac6z3SpJEDyDRvdyW4/Rwx+JU/wMCD1Py27IAAACoIgELYIb7n4DdpcGvjPKQvLn+13xPkfxd4picj/MkLrs+X3c7FgAAAAAeAhKwAAAAAAAAALCRe5+Afetb38rCwsLCwsLCwsLCwsLCwsLCwsLCcpKFb8ACAAAAAAAAwEZIwAIAAAAAAADARkjAAgAAAAAAAMBGSMACAAAAAAAAwEZIwAIAAAAAAADARkjAAgAAAAAAAMBGHl4C9sI1+RCWy0v3/uq4/tr9HNf7xb239LF6ubwOO0TufXK9c+Pqs8en6prrUpUrbbu68OF48nPcdnUTVj4Qse2JIbl3ZA7scXzXmp9z238X58derz/+uuL6p6VbVpl/oQ2xf7S9zm8AAAAAwIPlnmT3rzkBKwkW/eAuD/L2Af+ykmS4MMkKSWjYRIckSq4S6y2Jp7LLJNIeXWcu6Wj74T6x46Ot3d9bKMX/UJTm5130z1bnhy13b9efi0psq3PBpRKwAAAAAADsjHtS37/ZCdiU1gRIrqz47axUYsRKJkDcitZvpWkt9UW52O238FL76G/hSULGJkhq23P8cRKXjsG91yGU4kt+s88tukt8u/V+E/tYyPjG46VtNiml26/Ll7plnXzrMbW9Jf7a+MQ6Stty9Udzxi/GLvvHcvtYQx2x/tie2I+pOebHyaxvHd+43h7fMr+iVP3CxjA1OZgrVzv59adAxvda94GJtdT/cVtp/tn+vXbB6T5eWr40tt/m9o9zQZc19/oFAAAAAECBe8rcv+YErBg8YCcerqsJEHV8KgkQkx6zEyAxSWCTBxWS8LLx5Ei9qX0l4aFJW/Uqe5z9Bl9te43vW9Vun5BR72vxidI3JCU+nTTK9UOOtEePqS1P4tHlyZiMEkgqvlT9pfhb2i9y7arVb99PGb+YPJN4fPI11CNlxhj1zyI3Z20cWql/otzxtfkVZY936/Vq2W/K/BY+hrCkjj359afA163im9p/sj47/1wgg4SuvM/00azyHX2+xPmqt9v9p16/AAAAAADIcE+Y+zcpAavJA7d9wF7yDTR5YI/Jkbj0+0hCwSQrpIwpCZCSNRKwMSmhl0F8ISnSL6Y91e0VOkES6T6qxufUErB6/yl9JgeWkjG5hJeeTy31l+Jvab/IjW+1frdxUH4hFktii/0j5ca+0HW29n8ufrE0AavrFzYmkTo+1fdT+8iSevZ0/VnSf8Luq8c/NRf0nNLmlJ8qa1SOO3jQf6a/AAAAAACYyT1l7t/sBKx/4DYP2TYBYh/qWxJAQh74Bwm5VF2JhMZcuWRFSjKBIfFV2m5JgqNUZ227Zb9hKPoYGuO7twlYd2Dr+Mj6VLumtn/K+On5J8edZQLWrberbUwiebzbacpcbuLK3NP1Z1H/OXZfPf6puZC7ps0pP1VWbv5Fsn31MQcAAAAAPEQPKAErCQj3gK6ft1NJs80SII58g0wnBGw8nsTp9pvz7StJqAwSCqEsE0YygWETFD4+c6xNwEiCQrextr1G+scmPGJ/t8QndAxSv+7HUoKmRa1/Rwkqt0HH3FJ/Lv7W9ovU+Ipa/UvGT8enj9N16rhi/Lk4U+tFaXyj3PGl+aXljh+N/xSuE3Zx/Smw/efLmNB/ti2D+Sf9Y8qS/rbjJWaV79j5rftDNM1/idMdl2o3AAAAAAAZ7kly/9oTsPLgrBf1wO2TOXZ7WOIzuDyw9+vNw7omiYO4n00U6DLss7238AF/EKOuI9V+WVQ9ksDo17ufJRkkPyfbL4uJsba9RhIgsc646P6rxScG45hpm+yv90slc3Ky/evEpGJqe2v9ufhFsf3uP/02vYQyWuqfO3663ZKwimVLubFeqXPQP2794B9BqsQfZfun4fji/Gqsf/YcT5XvYumr1+0yi/SdGNStjrUWXX8yfJm2/3QMlf5rmX+2D+I/qOWTsCuUb89PmQ+6f5rGNsaR2gYAAAAAQJp7kty/tgQszp79BhqwJuYXNEna2gQ1AAAAAAAbIAGL86C/fZb6tWNgCeYXBPMAAAAAAHAC7il0/0jAAgAAAAAAADhHJGABAAAAAAAAYCMkYAEAAAAAAABgIyRgAQAAAAAAAGAjJGABAAAAAAAAYCMkYAEAAAAAAABgIyRgAWCOqwu33IQ3G9i6/JpT13/f0b/AfFwflzn3+Lk+AgCAe+jhJWAvXJMPYbm8dO+vjuuv3c9xvV/ce0sfq5fL67BD5N4n1zs3rj57fKquOZrjuwuhD2L/1lxKrO6Gu+V+W/ZdfGNeiG+V8hfYun55sPFzI9Pffo6uNCfn8HNBLXb65vqnb1dm+6pk/iT6SMcuc0timnX6Zcq/M6b+2Lez2pIi5Yc+Ohet8yc1//y4Z86npBnjOyW+uJ8sozELfZ/7XJh7/t/Z+bcg/tg3ufj0Z+icNtTKL0l9fk8tpxT/6N5j5vVl688H6cPqPYvMgQ1jqJpR/1mdv4X4pf4587dm0vUhE5+e3/r+/S7N6Z+W54tzpseuX9y6VDesMn/CHN/j/cFmQp+crH4AwFrclXz/mhOw8gGqP7jkRsF+wF9mbiqiC3PjJDe79kZYbhKvEustiaeyy2Qt8d0ZV++UG6iLSt+vbmJ894U9D86JzNelY3IX7UvVIdcTfa7JPnKzPOf0O/UYpeqXdateSs70/Jvb91OuX0vGt3Rsy/nT+vk015K2tZgbv8Qlx0gyJBXfIHHg9pt67tbKr7Gf3VP7sRb/Se8FJoj9WLL1HKtZUn/p2Ls6f0/Zfy11p/ax61L37/Ycmmrp8TW154tzJv2vp5xc5zb9/HaV3af7g7Wcun4AwGLuDmb/ZidgU1oTsLmy4kNQy8OOvaHx3Ar/fzln3gjW4tPfINB1yP76gU3aIe9jGXG7fOsgdbyQNvfb3HI98QZKEhjXugz3XjchxiCLbdsa8S0tvx87Wdz+V2Hf1DikLK6/kZSVimkwN9xi97Hf4rDb4/Gyvm9Lro8Sscc5p5fW8dFy7bPjn5ybhfh6so/Z3nK+ezPLj22PVdjzM9JjKOeTbmPT+IhE/cL3q+5Ds09tfrRcH3LXpyi33a+X+HQM7n1hmmTl5k/fZ25Jba9dv3qZ/hWl8Yty8dXOH1H6fBr0bdhvjlx8oji+0i9xm5QRxlKXtUb8rQlSaYeposncBKy1NBlk42++RmXU+neVzwenNH88mSeZvinNr2r9Um48VmII7RnF0lj/2Z6/mfj7PjHHxuu2tMdvd8f2Yx3K8XWrPvOLe58KYe74lo6LMdpFd1FpfrYcn+sfTY+hjJ30md61+nyhjh/1gfRL3CZ9EdrTx1LZbtto51bt/JB1tj/1HCz1T9y25P58afwtauMnpGzbPlG7/gk9vqnrQ227yNUPANgNd5Xfv+YErBh8wCU+3KbcIKVuMuINidws1B52ZP/RLm6FL3/ijUNUik+26XVyw6D7wMYj2/X+st3ekPXbJW73vt89tCPVxzk+dlWGv+FK9MOgXmWt+GaV70j8sf/izWKqnJq59bdqOc6OvZAbYk23N4o3obFf5f1gn9DvqXEV0m+1OVOLP7fd3kzLfqO6KvGJVPmp/kqaWb6Q9bovU+enfi8PE7Z91fFxSvXrc8juV5wf0m51bOwHHV/t+tSyXfdr7vpRk2t/lNvu61dtnHP90utT4ydK8ZXOHzmu9fPJzq0pSv2j16fGL4bk+87sv1b8TW1zZef6sWZJ30W19lUl4o992i8uzrlSbVzl88EpzW8xd36JUv21+Rfl6rfrz/X8LdUvUttjf0iVvg/dImRf3X8t19859Ue+jrCk+qn0Py1a5mfL//TIxSfjrcdE9ht85jml54va/K3Nz+p2U7fEZ/uwdH749rht/ZLpq1z/+OPVMYP9XCXV+wO93Zkaf03L+Ilc+2rzyx5nrw+17VGufgDAbrgr/P5NSsBq8kFmP+CWfANWPjAHNyhu6feRGwpzwyJltN4ctMrFl7th1+218cjNiy6jtN3uK6TO1A1ETuqGONVHtm3RWvHNKT9VVq6cmjn1T9ESV66/7Py2YzM3pqhlztTiT21Pxe4XF+8krsGpY5a2u5cpX1THX46ttK0a54L6S/MjVa8ea/m5dH2qbRfF64f7j43NL4m2zplfoun6JXFk+ncUY2EccvHpPrWKn09GdW7FpbH/Wsa3dv1cFL9SOwckFil7NG6mbr8k2l8rv8Vo3kyQjD9B4kyNSYtUG2O9erHFt/RNaX77cUj0eW1+Rbn6W+afl6nfk226/Zn9Su1LxRGtMv9L8Qep+HRcet7oebr0/s1riC+ScmxflRKoLfNzdgLWFZQbN83Ox6g2f2vzs2W7bbtfTHtL56eUp0OUfackKFPHx/1S9eo2rRF/UeP4iVz7UjEOhtS9GWw3sVe3B7n6AQC74a7y+zc7Aes/8MyHnL1BsjcNLTdoQj6MBzdUqbpc9+td1pCLbxRPoNtbukESS26gWtj/wy1snSJ3A7JWfHPKT5WVqrPFnPqnyJWvjcp2FdubbRuPmBtT1DJnavEnt7tAp8zFnFzdU+d6Tqlttr9rfS3bp87J2fVX5keqXt1n8nPtAbR2/Wq9ftSU+kDktrfUXytbS42fKJXROg9z/RnV5klJKr6W8Z0yV5fEX9omsaeSClMs6buo9T7DmhS/67+WuZIyaqMr6y4+H3Jzvza/olz9rfMvV3+KHH9u529L/Kl9dFxSdqxb9o1hLL1/Ey3x9VzB9p46e97Ivia+VGx3nYCNMdTmb21+1ra3xpebNyLVX7l1qTLsvrquVL2DNq0Qf1Fj+SLZPnd8y/zSJNZSnbntuf4FAOzGA0rAJj4gUzc9uRukaHYC1pFvCMQPTtmefFCSOAv/97OmFN/oBtnVpT/g9Qe7j0/FK2xfDG52JG5TtySYW29qhPSP3t/HkGhP7gZkrfhmle/Y/tXjPcXc+lvlytds2TIWo7Fx7dPxiGpMMg7uuNz8tvWk1OLPbZfxrrW7GJ9sy8QtRuWHsgZ9tKB83a7U+Wnnn4yFvQYVx6ehfl2cLqs6PxJl2/Ovdn2qbjfliTmJrLnzq3r9SvSB1jJ+ohRfy/kjZL9U2VH1PC7I9o9pX218S9fPJfHntk39vMop9p3MAVdPaR4U21Y4vha/7U8Zp1E9DfEJ20Y77+T94PwPlswrH1shrtr8EqX6q/NvYv1S11mdv5X4o1R8Oi7dLtk3htF6/c22vxSfbDP9m+oDPQYSZyzP9qu8T83P3PFaLv6Wz//S80Vt/tbmZ237KL6E5LwJdKyetM/G7OT6xx4/qEvKMn1tr2dL4/ekHldOalxbxk+k2tcyv+z4SKx6/ta2R7n+BQDshvuE2L/2BKx88OpFfeDJh91oe1jiZ6Dc0PTrzYelJh/kcT/7QanLSHy23saZuEGoqcUXbwr0omMYbJcP+dAn0gb50NfH6P6KbbR9GP/gvr0pT/F95uqQG9S+DN2G2C92Cf20OL4Vyrf9KzdUdvyzVqi/VcsNnJRv99Ex6LGSeHLx+21a3C+0SxvM37D0N6CZ8vtyatuDUR02jkJ8Lf1my4/h9xaUXzo/RbFtmf7R8ZXq12Mvx6TmX3F+OMXzz5l0fUpsl/NtcP1wS228eq4gfVy/xD6sbK9ev5za+M4ZP71P8fxRSp9PUer8L2qIb+r45q6fc+PXx8WlNPdkSXRfVqn8XuwnPbaGzJNsvZnjW+PXcyT5udwQn9js88GRGFOx1c6f4vxqqL82//Z+/hbjL8Sn+0XiiddxKSuOuYRZvP42tH9yfG5/u3uMzS+qbBFjjcfazyeRPb4hfmHHMJY9KNcscZ/i/HVq87O2XWTnaKZ9sf5B36mldXz18VKm7o9Yhu2j1PPD3Ph7cb94nJEbv1z5upza/MrGHtS2R8XzBACwB+4qv39tCVjgjp3rjVJLXNzkGXID7vpksy7ZuvyaU9e/AnngPNv4d9a/53D+L4mB69e27rx/T3D+DNq49/P3DuJfdP29B58/d612DnINvJ8YVwDYPRKwwJr0/8VOfsPoDMgNnI9RP/DIA9AOYgdS9nDenbUzOf9njyPXr209kP7d7XXkxOPD9fdu1PqZcbjH1DlOAhYAds1dyfePBCwAAAAAAACAc0QCFgAAAAAAAAA2QgIWAAAAAAAAADZCAhYAAAAAAAAANkICFgAAAAAAAAA2QgIWAAAAAAAAADZCAhYA5ri6cMtNeLOBrcuvOXX99x39C5wvrr/LnHv8XH8BAMAJPLwE7IVr8iEsl5fu/dVx/bX7Oa73i3tv6WP1cnkddojc++R658bVZ49P1TVHc3x3IfRB7N+aS4nV3RC33A/LvotvnAvxrVL+AlvXLw8efm5k+tvP0ZXm5Bx+LqjFTt9c//TtymxflcyfRB/p2GVuSUyzTr9M+XfG1B/7dlZbUqT80EfnonX+pOafH/fM+ZSUGN87m7+h73OfC1ud/1P6N+4nyyjMjePPXV+WWmN89Wf8nDJi3+aO1THOuW9YerzY+vNH+qAam8yxDWOomlH/WZ1fhfjP4vzKxJd7PrhLc/qn5fnlnOmx6xe3LtUNq8yfMMf3eP+xmdAnJ6sfAB4Od6Xdv+YErHzA6Q8W+SC3H8CXmQ/96MLc2MjNqL1RlZu4q8R6S+Kp7DJZS3x3xtU75QbnotL3q5sY331hz4NzIvN16ZjcRftSdcj1RJ9rso/czM45/U49Rqn6Zd2ql5IzPf/m9v2U61epjq3HvvXzaSul9rWc/6eOf6m54ztIPLi2T722SL3SZ5KsSdUv63XfS31Tyl96/F2J/VCy9TlYs6T+0rF3dX6dsv9a6k7tY9elng/s/fVUS4+vqT2/nDPpfz3l7PVkda6yTcuf6ZTnjjh1/QDwALg7jP2bnYBNaU3A5sqKD0ktiU97w+G5Ff7/Qs68UavFp/8Pv65D9tcPdNIOeR/LiNvlWwGp44W0ud/mluuJNziSwLjWZbj3ugkxBlls29aIb2n5/djJ4va/CvumxiFlcf2NpKxUTIO54Ra7j/2Whd0ej5f1fVtyfZSIPc45vbSOj5Zrnx3/5NwsxNeTfcz2lvPdm1l+bHuswp6fkR5DOZ90G5vGRyTqF75fdR+afWrzo+X6kLs+Rbntfr3Ep2Nw7wvTJCs3f/o+c0tqe+361cv0b5SrXxT7R8pVdaeuP6XPp0HZ5rhWugw7/6Jc+2rnv9gy/tz4xnkr7fHbXb/2cz2MwZT5VxrfKaQc0wVNJPZk/5t4m69pwdLja+O3yuePU+1/F3Pu/BzEaPap1i/lxmMlhtCeUSyN9Z/t+ZWJv+8Tc+ydn1+F+HLHxRjtoruoND9bjs/1j6bHUMZO+kzvWn1+UceP+kD6JW6Tvgjt6WOpbLdttHOrdn7IOtufeg6W+iduW3L/vzT+FrXxE1K2bZ+oXf+EHt/U9aG2XeTqBwCsxl2F9685ASsGH0CJD58pNzCpm4B4wyAf5rWHD9l/tItb4cuf+MEeleKTbXqdfKDrPrDxyHa9v2y3N0z9donbve93D+1I9XGOj12V4W+IEv0wqFdZK75Z5TsSf+y/eDOXKqdmbv2tWo6zYy/khlXT7Y3iTWLsV3k/2Cf0e2pchfRbbc7U4s9ttze7st+orkp8IlV+qr+SZpYvZL3uy9T5qd/Lzb5tX3V8nFL9+hyy+xXnh7RbHRv7QcdXuz61bNf9mrt+1OTaH+W2+/pVG6dev6JS+bX2x/5OXX+k3NbPJym7FGOKjTs1/0Sp/aXzf+v4o1R8sT+lSik7jqvsG8NonX+l9jdzleb6qSbXN6kE6pQ6lh6vpWJc5fPHqfV/bnvt/BOl+mvnZ5Sr364/1/OrVL9IbY/9IVX6PnSLkH11/61xfpW2+zrCkuqn0jdYW+Znyzdgc/HJeOsxkf0Gn6lO6fmlNn9r87O63dQt8dk+LJ0fvj1uW79k+irXP/54dcxgP1dJ9f5Db3emxl/TMn4i177a/LLH2etDbXuUqx8AsBp3Bd6/SQlYTT5o7AdQNQEbPuBTH1LygTa4gXBLv4984JsbCimj9cO7VS6+3A21bq+NR24udBml7XZfIXWmPuBzUjesqT6ybYvWim9O+amycuXUzKl/ipa4cv1l57cdm7kxRS1zphZ/ansqdr+4eCdxDU4ds7TdvUz5ojr+cmylbdU4F9Rfmh+pevVYy8+l61NtuyheP9x/bGx+SbR1zvwSTdcviSPTv1Gq/Jb+qV1/ip9PRnVuxUW3xe6TaWepf1PtiDaPP8j1f4xLyo5jocd30efXhPgkFtlmy22VOheFvfcpjUXK0uO13PXC9o/tg1zbtNL88+OQ6fPa9Ufk6k/1RXYeJOr3ZJtuf2a/UvtKY7Lo/IpK8Qep+HRcUvbq51fUEF8k5di+KiVQW+bn7ASsK6jlXLLzMarN39r8bNlu2+4X097S+Snl6RBl3ykJytTxcb9UvbpNa8Rf1Dh+Ite+VIyDIXVvBttN7NXtQa5+AMBq3FV4/2YnYP0HkvkQsjcw9kO95QZKyIfl4IYnVZfrfr3LGnLxjeIJdHtLNzBiyQ1OC/t/oIWtU+RuENaKb075qbJSdbaYU/8UufK1UdmuYnszbOMRc2OKWuZMLf7kdhfolLmYk6t76lzPKbXN9netr2X71Dk5u/7K/EjVq/tMfq49INauX63Xj5pSH4jc9pb6a2WL1D4t/TNlrHPlRbV50kLKSJ0TpT5ItSNly/hz/R/jkrJj3Xp8l35+tZBjU0mJKXJ9Y+9Han1sLT1eG8XoyrmLz5/c2OTaYu8Xc/Xr+ROl9p0yN+T4czu/WuJP7aPjkrK3Or9a4uu5gu09e/b+X/Y18aViu+sEbIyhNn9r87O2vTW+3LwRqf7KrUuVYffVdaXqHbRphfiLGssXyfa541vmlyaxlurMbc/1LwBgNQ8oAZv4AEvdlORuYKLZCVhH/g9+/GCT7ckHKYnT7Zf7v5M1pfhGN7CuLv0BrD94fXwqXmH7YnAzInGbuuWBrPWmQ0j/6P19DIn25G4Q1opvVvmO7V893lPMrb9VrnzNli1jMRob1z4dj6jGJOPgjsvNb1tPSi3+3HYZ71q7i/HJtkzcYlR+KGvQRwvK1+1KnZ92/slY2GtQcXwa6tfF6bKq8yNRtj3/aten6nZTnmi9Xmtz51f1+pXog5Rs+RP7p3T9kdhSD+RR9TxOaJl/otS/dh7lbBF/lIpPx6XbJfvGMFrnX6n9JU2fpy6Y7PUlyPWNtFGvl/pGXVwof+nxmo3Rzgt5P7i+BEvG3cdWiKt2/olS/dXzc2L9eh5qJzu/KvFHJzu/SvHJNtO/qT7QYyBxxvJsv8r71PzMHa/l4m+5vyg9v9Tmb21+1raP4ktIzptAx+pJ+2zMTq5/7PGDuqQs09f2ero0fk/qceWkxrVl/ESqfS3zy46PxKrnb217lOtfAMBq3BV8/9oTsPLBqBf1gSQfRqPtYYmfUXLD0a83H2aafNDG/ewHmS4j8dl3G2fiA7ymFl/80NaLjmGwXT6EQ59IG+RDWR+j+yu20fZh/IP49qY5xfeZq0NuIPsydBtiv9gl9NPi+FYo3/av3PDY8c9aof5WLTdYUr7dR8egx0riycXvt2lxv9AubTB/w9LfIGbK78upbQ9Gddg4CvG19JstP4bfW1B+6fwUxbZl+kfHV6pfj70ck5p/xfnhFM8/Z9L1KbFdzrfB9cMttfHquYL0cf0S+7CyvXr9corjW6vfmdo/uetP6fMpSp3/NXPmn96neP4rm8RfiE/3q8QT57GUH+e8hFmcfw3tL0mNvSyj7on1JMrV/RYX+9msxyDV96XyxdLjo9T4Fa8vsVyzpEKQGFP3JMXz0ymefw31187PWv3nfn7Nvb7d1fk1OT63v909xuYXVbaIscZjB/MzyB7fEL+wYxjLHpRrlrhPcf46tflZ2y6yczTTvlj/oO/U0jq++ngpU/dHLMP2Uer5ZG78vbhfPM7IjV+ufF1ObX5lYw9q26PieQIAWIO7Cu9fWwIWuGPneiPTEhc3YYbcILs+2axLti6/5tT1r0AeCM82/hP075JzeO/n/yniP+v5tzN3Pn6nPj93dv0djc8dxL/o/LoHn293rXYOnuIai+0xrgCwORKwwJr0/2VOfcvmHMgNlo9RP5DIA8oOYgdS9nDe3YXZ/bD38//E8TP/Fnognz+7nSecXw9CrZ8Zh3tMneMkYAFgU+5Ku38kYAEAAAAAAACcIxKwAAAAAAAAALARErAAAAAAAAAAsBESsAAAAAAAAACwERKwAAAAAAAAALARErAAAAAAAAAAsBESsHi4ri7cchPeJNS247wxfuu7ueq6y+uuu76kbwEAAAAAaPTwErAXrsmHsFxeuvdXx/WSUIjr/eLeW/pYvUhCYsC9T653JIFhj0/VNVeufVuTZJfUmWjyeZIxKvV7bfsZimMgSyk5dhn2ictozKTtbn1q/go/h8+9b7Yev9BH9+n8apk/MQEr+64dS+v8rZH5Pef4tepP8eecK7+l2LnxDxTm5yrlb6h6fULSlvN3Tec+/wAAAICNuDvh/WtOwMoDir7xlwcB+4B6WXlIvjBJnZiQ0CQJepVYb62dxGhp35Za2mP7z6ptX4vtK6u2/ZyVYpf5WpsTrfP3nN3J+Ln+2dv51aLUd/I/qrZKwEal+u/i+rDV3Llw5W49JQfueH6uoeX6hLKt5m+Lu/r8BgAAAHboYSdgU1oTsLmy4rc7UolZS8oY7eJW+G+xzHiQqbVPYorfkJHFPujWttf4+nUZqg227LjE9te2+2/2SvmuzH67ez9qbkv/yT4Tt8dvFusxjd/Ukn5aur1VLMcf59qfOrY0N+OxfRnm+NL81XXLUpprOYMyMn0s5UobRvvIuMRj1VwYxSH7ZcZX94EfFzOHSvHZOXrt6tH913L+tIxfztzzK26T+vx6d1z/jf9EP02dPy3lx/GMUyqWlaonVX+pfVE/Z9xij/f9LuXGuML7RPXZ9reMb4n0z7Uuw9Rfij9uk99q6I8PfRvZ+Oz8XFp+y/m3ZH63XJ9K52fcJvH0bbVtKLC/BaPb1dQ/FaX5o7fJnO5jcfVKGGvM36XtKx2/9PyMcuO7Rv8DAAAAJ+buYvevOQErBg+I5uFOVBOw6nj7ECEPCTFpJQ8kNoFlyf6jXdyKJQ8XpfbJA7EOWerX+9S21/iHJFWGvLd9VPuGTGm7b5va7h/67P4N/ZeKS0ttz41nnC9Lt7ewcUnCIjU+pfZJHLkxleNa5688jJf6MEXGTx8jZdhY4kN+XC/vYxhyfPxZ4pP9UjHk2i/9pdsk++n5WozPHTdIeMh7FaeonT82rtz45dh4U+3MnT+xv6T5vo/DflKG6hIvVW4kx8o2O29byrd1xbKsUv0t37DLHd90/XCyx7v1erXsN2X8fP2qjKn1y3q9/2A/17G1+RnNKt+pnX92/6nzW0i5uWOK52fg556qV97rOVciCWtNt1fU+qemNn98n4Z9Yv/q+pfO36Xtqx0vlp6fpfGtxQcAAACcOXfHu3+TErCa3MDbB7hqAjY8AKRu/lPf4On3cU8q9mFJyrAPMGvS7YsPdKMlxFTb3sK2J5VgqT2glbanHvgm92FiHAYK22NsEofvV7evnj9Lt1dJbDImccnEmZqbkYxzrs7i/DVSY1si9bYkoHPlpuJOtlP6KNUvlb6uxZeKS8ckP9u+84uOpXH8cpacXzpWOS62NXX+lOZP3JZKwNbKb4lflOovXR+i3PGt14/U8U3jW7GkfmH31f2X6ks9Jtqc8lNljcpxB8/tmygXs6xfcv1okRpjXWWpf2pSZfvF9FG/n2mXWDp/lravdryYe35K2bXxXdL/AAAAwBlwd9D7NzsBK3fz9gHIPtDZm/6WBwwxeqBI1ZV4gFmVrtP9nHqw7dW2N2h5QKr1X2m7/QaRsHXWpB7+tNJ2PzdCP8nP8uvEeoyXbp9K+jc1ZqU2yLxsGefcA3E09eG35QFb5MpNxZ3aN9v20O85tfhSdQ1iqpSfkhu/HDvXUzHlzh8dqxwX22rLFMk+dDvZ5Isscb+W8lviF8n6g7kJHtF6/Uge73aaOr7Wovodu6/uv1Rfps4ZMaf8VFm58Ytk+9Q+y8Us65dcP6pc2Tbpafuj1D9V7sCWvpAy47llm7t0/i5qX8PxYu752TK+xfgAAACA8+fu8vevLQGbeIBI3fTbBzp709/ygCFSZcs3WOIDg2xPfcvFxykPYI319BraJwnf0gNLbXtNywOSfoj0D5umnaXt/TdHldF4lPpPtqXWR5XtEo/8DTppk/wssdr2LtnuSQyZ+HXfCF/eqIDjOOTGUeZESyIgNX81qTtZx4T4ZV8bS7Zcxx6vzydP6k7UG43md4g1NrMYX6JsKU/HXzt/msYvxJRqx5LzS4+7rteWKUrzJ+5vz7uW8nW5sr+0M1VPqf5c+7Tc8U3XDyd3/NLro63f98GE+mW9HqvB+LsNtfkZzSrfqZ1/TfO7Qs8jy5Yvwdp9bcytbL1xfurwa/1TU5s/Un4/hq4ie34smb9L29dyvFh0fqpjPVe4rrOp/90OEleqXgAAAODE3J3q/rUnYOXGXC/2YcFuD0u86ZcHoH69fVhQ5EEr7mcfEHQZ+mGiN/cBotK+aNAGWUw9te05/uExHCPt0v2p+2DQz4myS9vlAU0S5P12t0x5AMs9+EW17f6h0+3jd5F64s/B0u1eIf7i2MTjCvuMjndLKkFSmr9R8uFXFOKPD+166avPxK/Ds8fLfNAx1MZP2D4olW+322tE/AdhdJKgNEZN51bsB7Ntyfml2yXjHfeR42K58vcd4z6DxcQR/weVTvw0lW/2k7k/+EecGutPtc9rOL54/Wisv2kME/w5Zet3P8fqa/W3jP+gb9wymJ8rlF87/+b2TTQ63i36+lQ8PzPtU4dX6T7QYyVltPRPi1wftZS/dP4ubV/p+GgwB1XdLfGVxre5/2M9um4AAADgPLg71f1rS8Bi9+QBdMKz7pA8mJWOr23HgDwQT0k8bGEQA+N3JyTpEv+Mxt4sun5g5ByuAQ8J8xcAAADYNRKw2Af9zaE9Jn92L36z6MRjwDzAHMybddCPp0G/AwAAALvn7ub3jwQsAAAAAAAAgHNEAhYAgLlSf7tysPD3KAEAAADgoXNPh/tHAhYAAAAAAADAOSIBCwAAAAAAAAAbIQELAAAAAAAAABshAQsAAAAAAAAAGyEBCwAAAAAAAAAbeXgJ2AvX5PivU19euvdXx/XX7ufav1ytj9XL5XXYIXLvk+ud5L+Yvca/kh3qjEts1zm5uriN7+omrGx0Kce541sOk32nlj8S+jPVj6uUv8A51B/HUZbENN+1fp42zrdz0Xp+VccvzP3U9Uv4a9iCa9ZW83fJ9aXl+r+aGf17p/FtpPnzc6/CuMpyyuszAAAAgLPknhT2rzkBKw/o+sFIEgE2wXZZSbpcmAdfeVi2D5DyoHmVWG9JPGs/e0o80qZaO3Js+7Zgx6HVxcw2zeYG5xwT2acU59dcdzG/lpo7P89FKf6W8Wu9fp2rJeM397o5xZL+vYv4ttTy+bnEOVxf9n79AAAAALCJh52ATWlNwObKit/uanmwlDJGu7gV/ls0Mx8kY5nyjalcfPFbOpKIiUlNiTeu10uMT8rV72M5ug77La1cX7eMQ4rEeq3jDLFHMcZU3XGbfOu5P970se2Da9dYnaxaWn4/trK4/a/Cvq19Uao/0t8yk/6amiwdfEvNxK/nTlxay6/Nr367izk2LbbXz9OwLfaZ3VfYOqa2PZJ6W/rX9k/cJsf2Y6X3WTj+omV8c/G3jF/p+jVoe9hvitz8jeMm7fHbXb/015LQfy3jH5XGr6Z6/Y91yxJi6zWM79L+3TS+yvba+RXrlv2T898pfX62fH7oOeyvC6E/bGxxMV1c7J9S/H35oT4R97H9sGT+AQAAALi33NPDjjzySNf97b89Wp59wxsHS2qffnmVPESF5VWvHW9/9au67ofMOr3o41/7Q8Ntr3XHvvr7jj//kCs7/pxbZP/vs+vdMb78V5v1jcur4nGuHNu+V7tydUxS/8G0tz8+sdh4f/a/Hz5oSsJSkwda+wAs5j6g+gdk9QDsH4rNQ7TIle8fmNX+g/0k+aDKjsmIKQmuYvmO7o/4QD+nH0r16/WSrEjFnyPx6eMlIWKPl7inlGmVvqGW+p8Gen8//uq9Hf+YjImkP+bEmuvflv6JSaS4Xt7HMV86/q3jm4tflMZPjotJQdmv9D+QUmPVKhVf7A+p0vehW4Tsq/uvNP5Rqf01pQRnbfxr47tG/24ZX3W7qVvaY+eSHzt3XFwv73UzpQ7ZbssWtc8Pme+6z6T+wTXbKV1fav0jSvHLzzbmVH1L5h8AAACAe8s9aeyIJP3iwxvL6Zfve/XwQTM+tOvFPFN7cx9Q7QO5kLJS61Ll2331A3Xq4VraYx/QxZzyU2XlyqnJHucqH/R/IjmQI/GlEkI24ZPrk1alBInQ2+2YlMY/Nfem9kGU6t/W/knNI7HK+DeOb6nc0vjpbxfGJVdOrp0tcv0b45KyY1/H8RVLz/8WuQRnbfxbxneN/t0qvpbtNna/mDlYmxfx/E6NUaqOvknuh9y81XLXl1r/RK3xi9y+S+YfAAAAgHvLPeHsCAnY81oGCVj3cGu/jSQPooln3tkPqPYbWCJVR658u69+gE49TKeSEmJO+amyag/7Obn6LSm/JWkhWhMUuT5pVUvA6j6x+xbH3/1nSVxaqn+XJnDWHP8oN76l+dE6frn2Rktiz/VvjEvKjnX34+ssPf9b2PGM5dfGf+r4zu3freKrxu/Kbpk3pTaL7Pnvyi9+fjTWv3UCVm/P1bVk/gEAAAC4tw7hdR9IwJ7fEh807QO8vJftiWfe2Q+o8g24UR2Jh+Bc+YMHescmGGxZU3/Fu1i+YxNI9ldiW+Xqt+VL/aUkjzVKcLljbftTiZopdB0SX2r8JLFh+07Y8Rc6CSLjNac/rdb+TfVPKu6oafxlHrr1yX4xx+fGNxe/aB0/2W9OgrAUf5SKT8el26XPqdr4R6X21+LLJThFbfybxjeY279bxlfb3nJ+lea/KCVIdazy3n5+jOp3G+0+ug0Six7nWv+IWvwid32KivMPAAAAwEPlnl52hATseS2vffXxNT5syoNnv939LMkC+dk/IIeH5dGiHpBL/K/vqjL94n7un3Mr5evYJB7/cB7ex/j1OlniP6jlH9JXKD8mFeIiCYHmB/WG/pOESW5bCxufLNKWaFS+W6YkeMWgjzPx+X0S26S/BuPvFtt/S/tA5BIoxf7JjI/unqbxj+Wk2q+OHe2TqV/v0zp+/lwLS25+yhglt+XiL8Sn+0XiiXNEyo/nlYRZHP9C+QOZ+Abz0ixSt6idH03j68zp37uIryX+7ByM/WoWXf/gWFe2bXrx8yOw9ettYtBPMbag2D8N8Ue+DlO2lrt+AAAAAHjQ3BPGjpCAPa9FxgPz8aCeZpNPkSSE7qK77mpc9jz+p4j9rsZ/LUv66C76t1bHnufnlnLXp4h+AwAAAJBwCK/7kEnAvnTx57pn3/DGfvH7say2fPNbviXZ7347ptHf4LK//vrQ6W8GypL75tvW/SYJFF+Xe107j7Lb8TffELzr2PfSb7PjvKP+rcW32/l5B0rXJ0+NIQlYAAAAAIZ7UtgRSfjpB6CwSNL1k0+/1C9YWabfScACAAAAAAAAZYfwug8kYE+DBCwAAAAAAAAwyyG87sOZJmAPEscCcnxqORskYAEAAAAAAIBZDuF1H3acgLXJVX2M/jlKrTsZErAAAAAAAADALIfwug87T8BqJGABAAAAAACA++8QXveBBOxpkIAFAAAAAAAAZjmE1304owRsLoGaS5za9faY1HI2SMACAAAAAAAAsxzC6z6skIC9vjwmNy+ubsKaeXSC1CZLU8lTWWeXSP8c2XVrxT0LCVgAAAAAAABglkN43YeFCdibq4vucHkt2cxFiUybHG1JoJbe145fK+7ZSMACAAAAAAAAsxzC6z4sTMD2FiQya8lSrZRkLW0TyTJJwAIAAAAAAAC7cgiv+3DiBGwyKeq0rLf72G2pZYQELAAAAAAAALArh/C6D5smYK+7S1fWOBF66baUJZOlxrjc22P0z1FqHQlYAAAAAAAAYF8O4XUfNk3AzpdMlhq5fSatJwELAAAAAAAA7MohvO7DjhOwOSRgAQAAAAAAgPvrEF73YWEC9vpy/GcADhdXYet8yWRpg9JxettWcTcjAQsAAAAAAADMcgiv+7AwAbs2nRCdKnfMkjI3QwIWAAAAAAAAmOUQXvfhzBKwDwYJWAAAAAAAAGCWQ3jdBxKwp0ECFgAAAAAAAJjlEF73gQTsaZCABQAAAAAAAGY5hNd9ONME7NK/16r/7qtezgYJWAAAAAAAAGCWQ3jdhx0nYG1yVR+jf45S606GBCwAAAAAAAAwyyG87sPOE7AaCVgAAAAAAADg/juE130gAXsaJGABAAAAAACAWQ7hdR/OKAGbS6DmEqd2vT0mtZwNErAAAAAAAADALIfwug8rJGCvLm4TnBdXN2HtdDpBapOlqeRprFMvkf45suvWinsWErAAAAAAAADALIfwug8LE7DXlzp5ed1dumMvr8PbCWxytCWBWnpfO36tuGcjAQsAAAAAAADMcgiv+7AwAWvdXF1MTmTWkqVaKcla2iZyZYo5cS9CAhYAAAAAAACY5RBe92HVBOx1d3lxFX5uk0uKtqy3+9htqSVtetyLkYAFAAAAAAAAZjmE131YKwF7c9VduOOG3yI9/mr/OBF66baU5ZOlt8bl3h6jf45S69Jx3wESsAAAAAAAAMAsh/C6DyskYOXX9w+Hi27Nf8cqmSw1cvu0rt8i7mYkYAEAAAAAAIBZDuF1HxYmYOUfszps8Ov7LQnYnJYE7FZxNyMBCwAAAAAAAMxyCK/7sCQBG359XxKbelnj1/l1snSK0nH9tg3jbkYCFgAAAAAAAJjlEF73YUkCdgM6ITpV7pglZW6GBCwAAAAAAAAwyyG87sOZJWAfDBKwAAAAAAAAwCyH8LoPJGBPgwQsAAAAAAAAMMshvO4DCdjTIAELAAAAAAAAzHIIr/twpgnYpX+vVf/dV72cDRKwAAAAAAAAwCyH8LoPO07A2uSqPkb/HKXWnQwJWAAAAAAAAGCWQ3jdh50nYDUSsAAAAAAAAMD9dwiv+0AC9jRIwAIAAAAAAACzHMLrPpxRAjaXQM0lTu16e0xqORskYAEAAAAAAIBZDuF1H1ZIwN5cXbhDQpLz4iqsnU4nSG2yNJU87etUS6R/juy6teKehQQsAAAAAAAAMMshvO7DwgTs9eUweSlJzYurm/CunU2OtiRQS+9rx68V92wkYAEAAAAAAIBZDuF1HxYmYK05icxaslQrJVlL20SuTEECFgAAAAAAANiHQ3jdh1USsNfdpTtGEpxTf5U/lxRtWW/3sdtSy9D8uBcjAQsAAAAAAADMcgiv+7BKAvaW/Gr/7TdJVYJzsFy6LWWyX8243Ntj9M9Ral00jPsOkIAFAAAAAAAAZjmE131YOQHrk64rfJu0lCyNcvtMXX+0TtzNSMACAAAAAAAAsxzC6z4sTMBeXRy6S/V1Vv+PW+kVM7UkYHNaErBbxd2MBCwAAAAAAAAwyyG87sPCBKz/5qjbX5KbflnpW6RzE7Cl44bbtom7GQlYAAAAAAAAYJZDeN2HxQnYdfUJUYljotwxS8rcDAlYAAAAAAAAYJZDeN2HM0vAPhgkYAEAAAAAAIBZDuF1H0jAngYJWAAAAAAAAGCWQ3jdBxKwp0ECFgAAAAAAAJjlEF734UwTsEv/Xqv+u696ORskYAEAAAAAAIBZDuF1H3acgLXJVX2M/jlKrTsZErAAAAAAAADALIfwug87T8BqJGABAAAAAACA++8QXveBBOxpkIAFAAAAAAAAZjmE1304owRsLoGaS5za9faY1HI2SMACAAAAAAAAsxzC6z6sloC97i7dcYfL6/B+Op0gtcnSVPI0JlX1Eumfo9S6NeKehQQsAAAAAAAAMMshvO7DSgnYq4tDd3l11V3MTGTa5GhLArX0vuV4sTTu2UjAAgAAAAAAALMcwus+rJCAvb48dBdXN113My+R2ZosFaUka2mbsOuWxr0ICVgAAAAAAABglkN43YeFCdibq4vbX9+fkchMJUpFy3q7j92WWqKlcS9GAhYAAAAAAACY5RBe92FhAla+RWqTnP5bpcetx7+vOlou3ZYy2a9mXO7tMfrnSK8rx30HSMACAAAAAAAAsxzC6z4sTMAOrPhNUp0szcntM3U934AFAAAAAAAA9uMQXvdhxwnYHBKwAAAAAAAAwP11CK/7sFICVv9K/xq/yj83AVs6LrVt7bibkYAFAAAAAAAAZjmE131YKQG7lpgMTSVLa3LHLClzMyRgAQAAAAAAgFkO4XUfziwB+2CQgAUAAAAAAABmOYTXfSABexokYAEAAAAAAIBZDuF1H0jAngYJWAAAAAAAAGCWQ3jdhzNNwC79e636777q5WyQgAUAAAAAAABmOYTXfdhxAtYmV/Ux+ucote5kSMACAAAAAAAAsxzC6z7sPAGrkYAFAAAAAAAA7r9DeN0HErCnQQIWAAAAAAAAmOUQXvfhjBKwuQRqLnFq19tjUsvZIAELAAAAAAAAzHIIr/uwNAF7c9VduP1vk5yX3XXYNJVOkNpkaSp5elvn7RLpn6PBuhXjnoUELAAAAAAAADDLIbzuwxoJ2MvlqUubMK0mUJ3S++rxK8U9GwlYAAAAAAAAYJZDeN2HM0jAVpOlSinJWtomButIwAIAAAAAAAC7dAiv+7BGAtbtL8nN4zLtV/lTiVLRst7uY7ellt7CuBcjAQsAAAAAAADMcgiv+7A0AWtdX3aH/pul192lK0snQFuTnbJfzbjc22P0z1FqXW8Q9x0gAQsAAAAAAADMcgiv+7B2AlaSrhdX4ef5isnSILfP1PVH68TdjAQsAAAAAAAAMMshvO7DwgTs1cWhu7i6Ce/kN/svVvkmaUsCNqclAbtV3M1IwAIAAAAAAACzHMLrPixMwApJZkpy0y8rfYt0bgK2dJzdtkXczUjAAgAAAAAAALMcwus+rJCAXVOfEJU4Jsods6TMzZCABQAAAAAAAGY5hNd9OLME7INBAhYAAAAAAACY5RBe94EE7GmQgAUAAAAAAABmOYTXfSABexokYAEAAAAAAIBZDuF1H0jAngYJWAAAAAAAAGCWQ3jdBxKwp0ECFgAAAAAAAJjlEF73gQTsaZCABQAAAAAAAGY5hNd9IAF7GiRgAQAAAAAAgFkO4XUfMonAly7+nE/CxsXvx7La8s1v+ZZkv/vtAAAAAAAAALIO4XUfJOGXSgSynGYhAQsAAAAAAAAUHcLrPpCAPa+FBCwAAAAAAABQdAiv+0AC9rwWErAAAAAAAABA0SG87gMJ2PNaSMACAAAAAAAARYfwug8kYM9rIQELAAAAAAAAFB3C6z488sgx6WeWZ9/wxsGS2odlg0XGAwAAAAAAAEDWvhKwGZ98+qXBAgAAAAAAAADngAQsAAAAAAAAAGyEBCwAAAAAAAAAbIQELAAAAAAAAABshAQsAAAAAAAAAGyEBCwAAAAAAAAAbIQELAAAAAAAAABshAQsAAAAAAAAAGyi6/5/SlNnCxQHfeEAAAAASUVORK5CYII=" alt="583e955eed2a70d72a91b057657e2516.png" />

6.3代码报错解决

Caused by: org.apache.hive.service.cli.HiveSQLException: Failed to open
new session: java.lang.RuntimeException:
org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.authorize.AuthorizationException): User: root is not allowed to impersonate
root

添加hdfs-site.xml授权配置

  <name>hadoop.proxyuser.root.hosts</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.root.groups</name>
<value>*</value>
</property>

重启 hdfs 和 yarn可以解决上面的报错。。。

stop-dfs.sh
stop-yarn.sh
start-dfs.sh
start-yarn.sh
上一篇:hive学习(二) hive操作


下一篇:ionic 项目中添加modal的步骤流程