高并发架构相关概念
什么是并发?
并发是指并发的访问,也就是某个时间点,有多少个访问同时到来;
通常如果一个系统的日PV在千万以上,有可能是一个高并发的系统,这里需要注意的是:只是有可能是一个高并发的系统,不一定是一个高并发的系统。
并发数和QPS是不同的概念,一般说QPS会说多少并发用户下QPS,当QPS相同时,并发用户数越大,网站并发处理能力越好。当并发用户数过大时,会造成进程(线程)频繁切换,反正真正用于处理请求的时间变少,每秒能够处理的请求数反而变少,同时用户的请求等待时间也会变大。找到最佳线程数能够让web系统更稳定,效率更高。
并发数 = QPS*平均响应时间
高并发具体关心什么?
QPS: 每秒请求或查询的数量,在互联网领域,指每秒响应请求数;
吞吐量: 单位时间内处理的请求量(通常由QPS与并发数决定);
响应时间: 从请求发出到收到响应花费的时间,例如一个系统处理一个HTTP请求需要100ms,这个100ms就是系统的响应时间;
PV: 综合浏览量,即页面浏览量或者点击量,一个访客在24小时内访问的页面数量;
UV: 独立访客 ,即一定时间范围内相同访客多次访问网站,只计算为一个独立的访客;
带宽: 计算带宽大小需要关注两个指标,峰值流量和页面的平均大小 ;
日网站带宽可以使用下面的公式来粗略计算:
日网站带宽=pv/统计时间(换算到秒)*平均页面大小(单位kB)*8
峰值一般是平均值的倍数;
QPS不等于并发连接数,QPS是每秒HTTP请求数量,并发连接数是系统同时处理的请求数量;
峰值每秒请求数(QPS) = (总PV数 * 80%) /(6小时秒数 * 20%)
压力测试: 测试能承受的最大并发,测试最大承受的QPS值。
测试工具(ab):目标是URL,可以创建多个访问线程对同一个URL进行访问(Nginx);
ab的使用: 模拟并发请求100次(100个人),总共请求5000次(每个人请求5000次)
ab -c 100 -n 5000 待测试网站(内存和网络不超过最高限度的75%)
QPS达到50:一般的服务器就可以应付;
QPS达到100: 假设关系型数据库的每次请求在0.01秒完成(理想),假设单页面只有一个SQL查询,那么100QPS意味着1秒中完成100次请求,但此时我们不能保证数据库查询能完成100次;
方案:数据库缓存层、数据库的负载均衡;
QPS达到800: 假设我们使用 百兆宽带,意味着网站出口的实际带宽是8M左右,假设每个页面是有10k,在这个并发的条件下,百兆带宽已经被吃完;
方案:CDN加速、负载均衡
QPS达到1000: 假设使用Redis缓存数据库查询数据,每个页面对Redis请求远大于直接对DB的请求;
Redis的悲观并发数在5W左右,但有可能之前内网带宽已经被吃光,表现出不稳定;
方案:静态HTML缓存
QPS达到2000: 文件系统访问锁都成为了灾难;
方案:做业务分离,分布式存储;
高并发解决方案案例
流量优化: 防盗链处理(把一些恶意的请求拒之门外)
前端优化: 减少HTTP请求、添加异步请求、启用浏览器的缓存和文件压缩、CDN加速、建立独立的图片服务器;
服务端优化: 页面静态化处理、并发处理、队列处理;
数据库优化: 数据库的缓存、分库分表、分区操作、读写分离、负载均衡
Web服务器优化: 负载均衡
高并发下的经验公式
通过QPS和PV计算部署服务器的台数
单台服务器每天PV计算
公式1:每天总PV = QPS * 3600 * 6
公式2:每天总PV = QPS * 3600 * 8
服务器计算
服务器数量 = ceil( 每天总PV / 单台服务器每天总PV )
峰值QPS和机器计算公式
原理: 每天80%的访问集中在20%的时间里,这20%时间叫做峰值时间
公式: ( 总PV数 * 80% ) / ( 每天秒数 * 20% ) = 峰值时间每秒请求数(QPS)
机器: 峰值时间每秒QPS / 单台机器的QPS = 需要的机器。