Floyd算法
弗洛伊德算法,用来计算多源最短路径(任意两个点之间的最短路径)
符号描述
- D(i,j)
- 节点i到节点j的最短距离
- N(i,j)
- 节点i到节点j的下一跳节点
思维
- 如果某个节点位于起点到终点的最短路径上
- D(i,j)=D(i,k)+D(k,j)
- 如果某个节点不位于起点到终点的最短路径上
- D(i,j)<D(i,k)+D(k,j)
Java
public class Floyd {
private int [][]graph;
private int size;
private int[][] d;
private int[][] n;
public Floyd(int[][] graph) {
this.graph = graph;
size=graph.length;
d=new int[size][size];
n=new int[size][size];
for (int i=0;i<size;i++)
for (int j=0;j<size;j++){
//拷贝graph
d[i][j]=graph[i][j];
n[i][j]=j;
}
cal();
}
private void cal() {
//经过点
for (int through = 0; through < size; through++){
//d的遍历
for (int start = 0; start < size; start++) {
//通过点和起点重合
if (start == through)
continue;
for (int end = 0; end < size; end++) {
//起点和终点重合或通过点和终点重合
if ( start == end || end == through)
continue;
int distance = d[start][through] + d[through][end];
if (distance < d[start][end]) {
d[start][end] = distance;
n[start][end] = through;
}
}
}
}
}
public void display(int start,int end){
String result=""+start;
while (n[start][end]!=end){
result+="->"+n[start][end];
start=n[start][end];
}
result+="->"+end;
System.out.println(result);
}
public static void main(String[] args) {
int INF=Integer.MAX_VALUE/2;
int[][] graph=new int[][]{
{INF,-1,3,INF,INF},
{INF,INF,3,2,2},
{INF,INF,INF,INF,INF},
{INF,1,5,INF,INF},
{INF,INF,INF,INF,-3}
};
Floyd floyd=new Floyd(graph);
floyd.display(0,4);
}
}