Description
给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7
Input
输入仅一行,包含两个整数n, k。
Output
输出仅一行,即j(n, k)。
Sample Input
5 3
Sample Output
7
HINT
50%的数据满足:1<=n, k<=1000 100%的数据满足:1<=n ,k<=10^9
Source
思路:朴素枚举肯定不行,想一下发现 K % I=K-K/I*I,然后打表找规律,数量级别是sqrt(n)的?,反打表能找粗规律来,然后就阔以辣。
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
long long k,n,ans,r;
int main()
{
scanf("%lld%lld",&n,&k);
if (k<n) ans+=(n-k)*k,n=k;
for (int i=;i<=n;i=r+)
{
r=min((k/(k/i)),n);
ans+=(r-i+)*k-(i+r)*(r-i+)/*(k/i);
}
printf("%lld",ans);
return ;
}
BZOJ 1257 余数之和sum