当我使用大型稀疏矩阵时,最好使用CCS,CRS等压缩矩阵.
我尝试使用ScalaNLP,la4j,colc来计算100,000 * 100,000稀疏矩阵.
有一些问题.
>微风(ScalaNLP / Scalala)
>它给了我CSCMatrix类型,它可以有100,000 * 100,000大小.
>但问题是它正在开发中.
>所以我们不能用CSCMatrix来计算CSCMatrix的元素产品,比如csc1:* csc2.
>并且您也无法相互添加CSCMatrix.
> la4j
>它有CCSMatrix和CRSMatrix.
>但是在创建(new CCSMatrixFactory).createMatrix(100000,100000)时,它会出现OutOfMemoryError.
>矩阵应为零,因此不应使用大的内存空间.
> colc
>它有SparseDoubleMatrix2D.
>但是当创建像新的SparseDoubleMatrix2d(100000,100000)这样的矩阵时,它会说IllegalArgumentException:矩阵太大了.
要计算大型稀疏矩阵,我可以使用哪个库?
你能告诉我这个例子吗?
解决方法:
我对Breeze很好奇,所以我查看了源代码.它有点乱,因为运算符都是从一些println样式代码生成中发出的(!)……但我想出了这个:
import breeze.linalg.operators.{BinaryOp, OpMulScalar}
object CSCMatrixExtraOps {
abstract class CSCMatrixCanMulM_M[@specialized (Int, Float, Long, Double) A]
extends BinaryOp[CSCMatrix[A], CSCMatrix[A], OpMulScalar, CSCMatrix[A]] {
protected def times(a: A, b: A): A
protected def zeros (rows: Int, cols: Int): CSCMatrix[A]
protected def builder(rows: Int, cols: Int, sz: Int): CSCMatrix.Builder[A]
final def apply(a: CSCMatrix[A], b: CSCMatrix[A]): CSCMatrix[A] = {
val rows = a.rows
val cols = a.cols
require(rows == b.rows, "Matrices must have same number of rows!")
require(cols == b.cols, "Matrices must have same number of cols!")
if (cols == 0) return zeros(rows, cols)
val res = builder(rows, cols, math.min(a.activeSize, b.activeSize))
var ci = 0
var acpStop = a.colPtrs(0)
var bcpStop = b.colPtrs(0)
while (ci < cols) {
val ci1 = ci + 1
var acp = acpStop
var bcp = bcpStop
acpStop = a.colPtrs(ci1)
bcpStop = b.colPtrs(ci1)
while (acp < acpStop && bcp < bcpStop) {
val ari = a.rowIndices(acp)
val bri = b.rowIndices(bcp)
if (ari == bri) {
val v = times(a.data(acp), b.data(bcp))
res.add(ari, ci, v)
acp += 1
bcp += 1
} else if (ari < bri) {
acp += 1
} else /* ari > bri */ {
bcp += 1
}
}
ci = ci1
}
res.result()
}
}
implicit object CSCMatrixCanMulM_M_Int extends CSCMatrixCanMulM_M[Int] {
protected def times(a: Int, b: Int) = a * b
protected def zeros(rows: Int, cols: Int) = CSCMatrix.zeros(rows, cols)
protected def builder(rows: Int, cols: Int, sz: Int) =
new CSCMatrix.Builder(rows, cols, sz)
}
implicit object CSCMatrixCanMulM_M_Double extends CSCMatrixCanMulM_M[Double] {
protected def times(a: Double, b: Double) = a * b
protected def zeros(rows: Int, cols: Int) = CSCMatrix.zeros(rows, cols)
protected def builder(rows: Int, cols: Int, sz: Int) =
new CSCMatrix.Builder(rows, cols, sz)
}
}
例:
import breeze.linalg._
import CSCMatrixExtraOps._
val m1 = CSCMatrix((0, 0, 0), (0, 5, 0), (0, 0, 10), (0, 13, 0))
val m2 = CSCMatrix((0, 0, 0), (0, 5, 0), (0, 0, 10), (13, 0, 0))
(m1 :* m2).toDenseMatrix
结果:
0 0 0
0 25 0
0 0 100
0 0 0