cv

scores = cross_val_score(model,train_x,train_y,cv=5,scoring='neg_mean_squared_error')

cv或者grid_search的惯例是,会令scoring尽可能大,因为一般score是准确率这种越大越好的,而不是mse这种越小越好的。

所以mse=-neg_mean_squared_error
rmse =(-neg_mean_squared_error)**0.5
上一篇:机器学习入门:极度舒适的GBDT原理拆解


下一篇:求和,求平均数