2020-11-27

numpy_03


打卡第三天,给爷冲!

统计相关

次序统计

计算最小值

例题:

import numpy as np
x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = np.amin(x)
print(y) # 11
y = np.amin(x, axis=0)
print(y) # [11 12 13 14 15]
y = np.amin(x, axis=1)
print(y) # [11 16 21 26 31]

计算最大值

例题:

import numpy as np
x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = np.amax(x)
print(y) # 35
y = np.amax(x, axis=0)
print(y) # [31 32 33 34 35]
y = np.amax(x, axis=1)
print(y) # [15 20 25 30 35]

计算极差

例题

import numpy as np
np.random.seed(20200623)
x = np.random.randint(0, 20, size=[4, 5])
print(x)
# [[10 2 1 1 16]
# [18 11 10 14 10]
# [11 1 9 18 8]
# [16 2 0 15 16]]
print(np.ptp(x)) # 18
print(np.ptp(x, axis=0)) # [ 8 10 10 17 8]
print(np.ptp(x, axis=1)) # [15 8 17 16]

计算分位数

numpy.percentile(a, q, axis=None, out=None, overwrite_input=False,
interpolation=‘linear’, keepdims=False)
a:array,用来算分位数的对象,可以是多维的数组。
q:介于0-100的float,用来计算是几分位的参数,如四分之一位就是25,如要算两个位置
的数就[25,75]。
axis:坐标轴的方向,一维的就不用考虑了,多维的就用这个调整计算的维度方向,取值范
围0/1。
例题

import numpy as np
np.random.seed(20200623)
x = np.random.randint(0, 20, size=[4, 5])
print(x)
# [[10 2 1 1 16]
# [18 11 10 14 10]
# [11 1 9 18 8]
# [16 2 0 15 16]]
print(np.percentile(x, [25, 50]))
# [ 2. 10.]
print(np.percentile(x, [25, 50], axis=0))
# [[10.75 1.75 0.75 10.75 9.5 ]
# [13.5 2. 5. 14.5 13. ]]
print(np.percentile(x, [25, 50], axis=1))
# [[ 1. 10. 8. 2.]
# [ 2. 11. 9. 15.]]

均值与方差

计算中位数

例题:

import numpy as np
np.random.seed(20200623)
x = np.random.randint(0, 20, size=[4, 5])
print(x)
# [[10 2 1 1 16]
# [18 11 10 14 10]
# [11 1 9 18 8]
# [16 2 0 15 16]]
print(np.percentile(x, 50))
print(np.median(x))
# 10.0
print(np.percentile(x, 50, axis=0))
print(np.median(x, axis=0))
# [13.5 2. 5. 14.5 13. ]
print(np.percentile(x, 50, axis=1))
print(np.median(x, axis=1))
# [ 2. 11. 9. 15.]

计算平均值

例题

import numpy as np
x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = np.mean(x)
print(y) # 23.0
y = np.mean(x, axis=0)
print(y) # [21. 22. 23. 24. 25.]
y = np.mean(x, axis=1)
print(y) # [13. 18. 23. 28. 33.]

计算加权平均值

例题

import numpy as np
x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = np.average(x)
print(y) # 23.0
y = np.average(x, axis=0)
print(y) # [21. 22. 23. 24. 25.]
y = np.average(x, axis=1)
print(y) # [13. 18. 23. 28. 33.]
y = np.arange(1, 26).reshape([5, 5])
print(y)
# [[ 1 2 3 4 5]
# [ 6 7 8 9 10]
# [11 12 13 14 15]
# [16 17 18 19 20]
# [21 22 23 24 25]]
z = np.average(x, weights=y)
print(z) # 27.0
z = np.average(x, axis=0, weights=y)
print(z)
# [25.54545455 26.16666667 26.84615385 27.57142857 28.33333333]
z = np.average(x, axis=1, weights=y)
print(z)
# [13.66666667 18.25 23.15384615 28.11111111 33.08695652]

计算方差

numpy.var(a[, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue]) Compute the variance along the specified axis.
ddof=0:是“Delta Degrees of Freedom”,表示*度的个数。
要注意方差和样本方差的无偏估计,方差公式中分母上是n ;样本方差无偏估计公式中分母上是n‐
1 ( n 为样本个数)。
例题:

import numpy as np
x = np.array([[11, 12, 13, 14, 15],
[16, 17, 18, 19, 20],
[21, 22, 23, 24, 25],
[26, 27, 28, 29, 30],
[31, 32, 33, 34, 35]])
y = np.var(x)
print(y) # 52.0
y = np.mean((x ‐ np.mean(x)) ** 2)
print(y) # 52.0
y = np.var(x, ddof=1)
print(y) # 54.166666666666664
y = np.sum((x ‐ np.mean(x)) ** 2) / (x.size ‐ 1)
print(y) # 54.166666666666664
y = np.var(x, axis=0)
print(y) # [50. 50. 50. 50. 50.]
y = np.var(x, axis=1)
print(y) # [2. 2. 2. 2. 2.]

相关

计算协方差矩阵

numpy.cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None,aweights=None)
例题:

import numpy as np
x = [1, 2, 3, 4, 6]
y = [0, 2, 5, 6, 7]
print(np.cov(x)) # 3.7 #样本方差
print(np.cov(y)) # 8.5 #样本方差
print(np.cov(x, y))
# [[3.7 5.25]
# [5.25 8.5 ]]
print(np.var(x)) # 2.96 #方差
print(np.var(x, ddof=1)) # 3.7 #样本方差
print(np.var(y)) # 6.8 #方差
print(np.var(y, ddof=1)) # 8.5 #样本方差
z = np.mean((x ‐ np.mean(x)) * (y ‐ np.mean(y))) #协方差
print(z) # 4.2
z = np.sum((x ‐ np.mean(x)) * (y ‐ np.mean(y))) / (len(x) ‐ 1) #样本协方差
print(z) # 5.25
z = np.dot(x ‐ np.mean(x), y ‐ np.mean(y)) / (len(x) ‐ 1) #样本协方差
print(z) # 5.25

计算相关系数

numpy.corrcoef(x, y=None, rowvar=True, bias=np._NoValue, ddof=np._NoValue)
np.cov() 描述的是两个向量协同变化的程度,它的取值可能非常大,也可能非常小,这就导致没法
直观地衡量二者协同变化的程度。相关系数实际上是正则化的协方差, n 个变量的相关系数形成一
个n 维方阵。
例题:

import numpy as np
np.random.seed(20200623)
x, y = np.random.randint(0, 20, size=(2, 4))
print(x) # [10 2 1 1]
print(y) # [16 18 11 10]
z = np.corrcoef(x, y)
print(z)
# [[1. 0.48510096]
# [0.48510096 1. ]]
a = np.dot(x ‐ np.mean(x), y ‐ np.mean(y))
b = np.sqrt(np.dot(x ‐ np.mean(x), x ‐ np.mean(x)))
c = np.sqrt(np.dot(y ‐ np.mean(y), y ‐ np.mean(y)))
print(a / (b * c)) # 0.4851009629263671

直方图

numpy.digitize(x, bins, right=False) Return the indices of the bins to which each value
in input array belongs.
1.x:numpy数组
2.bins:一维单调数组,必须是升序或者降序
3.right:间隔是否包含最右
4.返回值:x在bins中的位置。
例题:

import numpy as np
x = np.array([0.2, 6.4, 3.0, 1.6])
bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0])
inds = np.digitize(x, bins)
print(inds) # [1 4 3 2]
for n in range(x.size):
print(bins[inds[n] ‐ 1], "<=", x[n], "<", bins[inds[n]])
# 0.0 <= 0.2 < 1.0
# 4.0 <= 6.4 < 10.0
# 2.5 <= 3.0 < 4.0
# 1.0 <= 1.6 < 2.5
上一篇:csdn_export_md


下一篇:统计计算 R语言