pandas玩Excel ---小白笔记2,感谢Timothy老师

一、多表查询

原文件是:

pandas玩Excel ---小白笔记2,感谢Timothy老师       pandas玩Excel ---小白笔记2,感谢Timothy老师

 

 1.联合查询:查询学生表对应的成绩表的学生成绩。

# *_*coding:utf-8 *_*
# @Author : zyb
import pandas as pd
students = pd.read_excel('多表查询.xlsx',sheet_name='学生表')
scores = pd.read_excel('多表查询.xlsx',sheet_name='成绩表')

exl = students.merge(scores,on='ID')
print(exl)

  效果:查出结果是保留了公有的数据

      pandas玩Excel ---小白笔记2,感谢Timothy老师

 

 2.联合查询:查询学生表对应的成绩表的学生成绩。保留学生表数据

# *_*coding:utf-8 *_*
# @Author : zyb
import pandas as pd
students = pd.read_excel('多表查询.xlsx',sheet_name='学生表')
scores = pd.read_excel('多表查询.xlsx',sheet_name='成绩表')

exl = students.merge(scores,how='left',on='ID')
print(exl)

   效果:

      pandas玩Excel ---小白笔记2,感谢Timothy老师

 

 3.联合查询:查询学生表对应的成绩表的学生成绩。保留学生表数据-->分数保留整数,没有匹配到显示0,on参数是两个表都有这个列名就可以是用,如果不一样就使用left_on=,right_on=

# *_*coding:utf-8 *_*
# @Author : zyb
import pandas as pd
students = pd.read_excel('多表查询.xlsx',sheet_name='学生表')
scores = pd.read_excel('多表查询.xlsx',sheet_name='成绩表')

exl = students.merge(scores,how='left',left_on='ID',right_on='ID').fillna(0)
exl['分数'] = exl.分数.astype(int)
print(exl)

  效果:

      pandas玩Excel ---小白笔记2,感谢Timothy老师

 

 4.以上1,2,3,是用的merge方法,现在看看用join: 首先join要指定index_col。之后用how=参数控制是左连接how=‘left’还有右连接how=‘right’,还是取交集how='inner'

# *_*coding:utf-8 *_*
# @Author : zyb
import pandas as pd
students = pd.read_excel('多表查询.xlsx',sheet_name='学生表',index_col="ID")
scores = pd.read_excel('多表查询.xlsx',sheet_name='成绩表',index_col="ID")

exl_left = students.join(scores,how='left').fillna(0)
exl_right = students.join(scores,how='right').fillna(0)
exl_inner = students.join(scores,how='inner').fillna(0)
# exl['分数'] = exl.分数.astype(int)
print(exl_left)
print(exl_right)
print(exl_inner)

  效果:

      pandas玩Excel ---小白笔记2,感谢Timothy老师  pandas玩Excel ---小白笔记2,感谢Timothy老师  pandas玩Excel ---小白笔记2,感谢Timothy老师

 

 

 5.pandas对Excel数据校验:满分是100分的试卷

原文件:

pandas玩Excel ---小白笔记2,感谢Timothy老师

 

 1.把不是0-100的分数打印出来,axis参数:0是按照列来,1 是按照行来。如果显示不齐,把print(f'{row.ID} exl{row.学生} 数据校验0-100 {row.分数}')空格换成\t 制表符就OK了

# *_*coding:utf-8 *_*
# @Author : zyb
import pandas as pd
exl = pd.read_excel('数据校验.xlsx')
def fen_jiaoyao(row):
    try:
        assert 0<=row.分数<=100
    except:
        print(f'{row.ID} exl{row.学生} 数据校验0-100 {row.分数}')
exl.apply(fen_jiaoyao,axis=1)

  效果:

      pandas玩Excel ---小白笔记2,感谢Timothy老师

2.拆分数据:按照一定的条件把学生和分数分别拆分出来

pandas玩Excel ---小白笔记2,感谢Timothy老师

 

 

# *_*coding:utf-8 *_*
# @Author : zyb
import pandas as pd
exl = pd.read_excel('数据拆分.xlsx',index_col='ID')
df = exl['学生\分数'].str.split(' ',n=2,expand=True)
exl["学生"] = df[0]
exl["分数"] = df[1]
exl = exl.drop(['学生\分数'],axis=1) #删除列
print(exl)

  效果:

      pandas玩Excel ---小白笔记2,感谢Timothy老师

 

 3.删除行和列操作:

# *_*coding:utf-8 *_*
# @Author : zyb
import pandas as pd
exl = pd.read_excel('数据拆分.xlsx',index_col='ID')
df = exl['学生\分数'].str.split(' ',n=2,expand=True)
exl["学生"] = df[0]
exl["分数"] = df[1]
exl = exl.drop(['学生\分数'],axis=1) #删除列
exl = exl.drop([2,3])
print(exl)

  效果:

      pandas玩Excel ---小白笔记2,感谢Timothy老师

 

 二、数据统计:原数据

pandas玩Excel ---小白笔记2,感谢Timothy老师

 

 1.求 加两列每个同学的总分数和平均分数,加一行求每个科目的平均分数

# *_*coding:utf-8 *_*
# @Author : zyb
import pandas as pd
exl = pd.read_excel('数据统计.xlsx',index_col='ID')
#拿到三次考试的成绩进行数据统计
shuju = exl[['语文','数学','英语']]
#按行求和、求平均值
hang_sum = shuju.sum(axis=1)
hang_mean = shuju.mean(axis=1)
exl['总分数'] = hang_sum
exl['平均分'] = hang_mean
#按列求和、求平均值
# lie_sum = shuju.sum()
lie_mean = shuju.mean()
lie_mean["姓名"] = "平均数"
lie_mean["总分数"] = ""
lie_mean["平均分"] = ""
exl=exl.append(lie_mean,ignore_index=True)

print(exl)

  效果:

      pandas玩Excel ---小白笔记2,感谢Timothy老师

2. 在1的基础上,如果想求总分数的平均值和平均值的平均值

# *_*coding:utf-8 *_*
# @Author : zyb
import pandas as pd
exl = pd.read_excel('数据统计.xlsx',index_col='ID')
#拿到三次考试的成绩进行数据统计
shuju = exl[['语文','数学','英语']]
#按行求和、求平均值
hang_sum = shuju.sum(axis=1)
hang_mean = shuju.mean(axis=1)
exl['总分数'] = hang_sum
exl['平均分'] = hang_mean
#按列求和、求平均值
# lie_sum = shuju.sum()
# lie_mean = shuju.mean()
lie_mean = exl[['语文','数学','英语','总分数','平均分']].mean()
lie_mean["姓名"] = "平均数"
# lie_mean["总分数"] = ""
# lie_mean["平均分"] = ""
exl=exl.append(lie_mean,ignore_index=True)

print(exl)

  效果:

      pandas玩Excel ---小白笔记2,感谢Timothy老师

 

 3.pandas对Excel数据去重

原数据

pandas玩Excel ---小白笔记2,感谢Timothy老师

 

 1.去重数据,drop_duplicates函数,参数subset=用来指定按照那一列或者那几列去重。多列传list。参数keep= 用来指定保留前面还是后面的数据。keep=‘first ’默认的保留前面的数据,keep='last' 保留后面的数据

# *_*coding:utf-8 *_*
# @Author : zyb
import pandas as pd
exl = pd.read_excel('数据去重.xlsx')
exl = exl.drop_duplicates(subset='姓名',keep='last')
print(exl)

  效果:

      pandas玩Excel ---小白笔记2,感谢Timothy老师

 

 2.找出重复数据:

  1.找出重复数据的索引

# *_*coding:utf-8 *_*
# @Author : zyb
import pandas as pd
exl = pd.read_excel('数据去重.xlsx')
dupe = exl.duplicated(subset='姓名')
#找出重复数据
dupe = dupe[dupe==True]#简写是dupe = dupe[dupe]
print(dupe)
# 有重复数据显示True
# print(dupe.any())

  效果是:

      pandas玩Excel ---小白笔记2,感谢Timothy老师

 

   2.通过拿到这个索引来定位重复数据

  

# *_*coding:utf-8 *_*
# @Author : zyb
import pandas as pd
exl = pd.read_excel('数据去重.xlsx')
dupe = exl.duplicated(subset='姓名')
#找出重复数据
dupe = dupe[dupe==True]#简写是dupe = dupe[dupe]
exl_chong = exl.iloc[dupe.index]
print(exl_chong)

    效果:

        pandas玩Excel ---小白笔记2,感谢Timothy老师

 

上一篇:数据分析day02


下一篇:python机器学习 | 朴素贝叶斯算法介绍及实现