The Unique MST
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 28673 | Accepted: 10239 |
Description
Given a connected undirected graph, tell if its minimum spanning tree is unique.
Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
1. V' = V.
2. T is connected and acyclic.
Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.
Input
The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.
Output
For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.
Sample Input
2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
Sample Output
3
Not Unique!
Source
求次小生成树,看看是不是和最小一样
方法:
kruskal求MST同时建图,dfs转有根树同时递推f[i][j]为i到j在树上的路径中权值最大是多少O(n^2)
次小一定是最小加一条边减一条边得到,枚举加哪一条边比较w和f[u][v]
//
// main.cpp
// poj1679
//
// Created by Candy on 10/11/2016.
// Copyright © 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=,M=,INF=1e9;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,u,v,w;
struct edge{
int v,w,ne;
}e[N<<];
int h[N],cnt=;
inline void ins(int u,int v,int w){
cnt++;
e[cnt].v=v;e[cnt].w=w;e[cnt].ne=h[u];h[u]=cnt;
cnt++;
e[cnt].v=u;e[cnt].w=w;e[cnt].ne=h[v];h[v]=cnt;
}
struct data{
int u,v,w;
bool operator <(const data &r)const{return w<r.w;}
}a[M];
int fa[N];
inline int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int use[N];
int kruskal(){
sort(a+,a++m);
int cnt=,ans=;
for(int i=;i<=m;i++){
int u=a[i].u,v=a[i].v,w=a[i].w;
int f1=find(u),f2=find(v);
if(f1==f2) continue;
fa[f1]=f2;
ins(u,v,w);
use[i]=;
cnt++; ans+=w;
if(cnt==n-) break;
}
return ans;
}
int f[N][N],vis[N];
void dfs(int u){
vis[u]=;
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w;
if(vis[v]) continue;
for(int x=;x<=n;x++) if(vis[x]) f[x][v]=f[v][x]=max(f[x][u],w);
dfs(v);
}
}
void sol(){
cnt=;memset(h,,sizeof(h));
memset(f,,sizeof(f));
memset(vis,,sizeof(vis));
memset(use,,sizeof(use));
for(int i=;i<=n;i++) fa[i]=i; int ans=kruskal();
dfs();
int mn=INF;
for(int i=;i<=m;i++) if(!use[i]){
int u=a[i].u,v=a[i].v,w=a[i].w;//printf("hi %d %d %d %d\n",u,v,w,f[u][v]);
mn=min(mn,w-f[u][v]);
}
if(mn==) puts("Not Unique!");
else printf("%d\n",ans);
}
int main(int argc, const char * argv[]){
int T=read();
while(T--){
n=read();m=read();
for(int i=;i<=m;i++){a[i].u=read();a[i].v=read();a[i].w=read();}
sol();
}
return ;
}