The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 2 28 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
思路:和之前更新的校赛的题目差不多,都是枚举+二分查找
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
#define maxn 4040
int a[maxn],b[maxn],c[maxn],d[maxn],sum[maxn*maxn];
int main()
{
int n,i,j;
while(scanf("%d",&n)!=EOF)
{
for(i=0;i<n;++i)
scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]);
for(i=0;i<n;++i)
{
for(j=0;j<n;++j)
sum[n*i+j]=c[i]+d[j];
}
sort(sum,sum+n*n);
int ans=0;
for(i=0;i<n;++i)
{
for(j=0;j<n;++j)
{
int k=-(a[i]+b[j]);
ans+=upper_bound(sum,sum+n*n,k)-lower_bound(sum,sum+n*n,k);
}
}
printf("%d\n",ans);
}
return 0;
}