Java中类的初始化

类从被加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括:加载、验证、准备、解析、初始化、使用和卸载七个阶段。其中验证、准备、解析3个部分统称为连接。类加载的过程包括了加载、验证、准备、解析、初始化五个阶段。

加载、验证、准备、初始化和卸载这5个阶段的顺序时确定的,类的加载过程必须按照这种顺序按部就班的开始,而解析阶段则不一定,它在某些情况下可以在初始化阶段之后开始,这是为了支持Java语言的运行时绑定(也成为动态绑定或晚期绑定)。另外注意这里的几个阶段是按顺序开始,而不是按顺序进行或完成,因为这些阶段通常都是互相交叉地混合进行的,通常在一个阶段执行的过程中调用或激活另一个阶段。

类初始化是类加载过程的最后一个阶段,到初始化阶段,才真正开始执行类中的Java程序代码。虚拟机规范严格规定了有且只有5种情况必须立即对类进行初始化:

  • 第一种:遇到new、getstatic、putstatic、invokestatic这四条字节码指令时,如果类还没有进行过初始化,则需要先触发其初始化。生成这四条指令最常见的Java代码场景是:使用new关键字实例化对象时、读取或设置一个类的静态字段(static)时(被static修饰又被final修饰的,已在编译期把结果放入常量池的静态字段除外)、以及调用一个类的静态方法时。
  • 第二种:使用Java.lang.refect包的方法对类进行反射调用时,如果类还没有进行过初始化,则需要先触发其初始化。
  • 第三种:当初始化一个类的时候,如果发现其父类还没有进行初始化,则需要先触发其父类的初始化。
  • 第四种:当虚拟机启动时,用户需要指定一个要执行的主类,虚拟机会先执行该主类。
  • 第五种:当使用JDK1.5支持时,如果一个java.langl.incoke.MethodHandle实例最后的解析结果REF_getStatic、REF_putStatic、REF_invokeStatic的方法句柄,并且这个方法句柄所对应的类没有进行过初始化,则需要先触发其初始化。

虚拟机规定有且只有这5种情况才会触发类的初始化,这5中场景中的行为称为对一个类进行主动引用,除此之外所有引用类的方式都不会触发其初始化,称为被动引用。下面举一些例子来说明被动引用。

1、通过子类引用父类中的静态字段,这时对子类的引用为被动引用,因此不会初始化子类,只会初始化父类

package org.wrh.classupload;
/*
* 通过子类引用父类的静态字段,不会导致子类初始化
* */
public class TestClassDemo01 { public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(SubClass.i);//子类引用父类的静态字段 } }
class SuperClass{
public static int i=3;//父类的static字段
static{//当此类在虚拟机中初始化的时候,此static块将会被执行
System.out.println("SuperClass init");
}
}
class SubClass extends SuperClass{
static{//当此类在虚拟机中初始化的时候,此static块将会被执行
System.out.println("SubClass init");
} }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

程序运行结果如下:

SuperClass init 
3

即只输出了“SuperClass init”,而没有输出“SubClass init”。

结论:对于静态字段,只有直接定义这个字段的类才会被初始化,因此通过其子类来引用父类中定义的静态字段,只会触发父类的初始化而不会触发子类的初始化。至于是否要触发子类的加载和验证,在虚拟机规范中并未明确规定,这点取决于虚拟机的具体实现。

使用new实例化对象时,会先把父类初始化,然后再初始化此类本身

package org.wrh.classupload;
/*
* 通过子类引用父类的静态字段,不会导致子类初始化
* */
public class TestClassDemo01 { public static void main(String[] args) {
//System.out.println(SubClass.i);
//SuperClass s=new SuperClass();
SubClass s=new SubClass(); } }
class SuperClass{
public static int i=3;
static{
System.out.println("SuperClass init");
}
}
class SubClass extends SuperClass{
static{
System.out.println("SubClass init");
} }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

运行结果如下:

SuperClass init 
SubClass init

通过数组定义来引用类,不会触发此类的初始化

package org.wrh.classupload;

public class TestClassDemo02 {

    public static void main(String[] args) {
// TODO Auto-generated method stub
SuperClass_1 superClass[]=new SuperClass_1[5]; } }
class SuperClass_1{
static{
System.out.println("SuperClass init");
} }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

执行后没有输出任意内容,说明没有进行任何类的初始化工作。

但是,但这段代码里触发了另一个名为“LLSuperClass_1”的类的初始化,它是一个由虚拟机自动生成的、直接继承于java.lang.Object的子类,创建动作由字节码指令newarray触发,很明显,这是一个对数组引用类型的初始化。

常量在编译阶段会存入调用它的类的常量池中,本质上没有直接引用到定义该常量的类,因此不会触发定义常量的类的初始化

package org.wrh.classupload;

public class NotInitialization {

    public static void main(String[] args) {
System.out.println(ConstClass.VALUE);
} }
class ConstClass{
public static final int VALUE=3;
static{
System.out.println("ConstClass init");
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

运行结果如下:

3

没有输出“ConstClass init”,因此可以得到当我们引用final修饰的常量时此类并没有初始化。 
虽然程序中引用了ConstClass类的常量VALUE,但是在编译阶段将此常量的值“3”存储到了调用它的类ConstClass的常量池中,对常量Const.VALUE的引用实际上转化为了ConstClass类对自身常量池的引用。也就是说,实际上ConstClass的Class文件之中并没有Const类的符号引用入口,这两个类在编译成Class文件后就不存在任何联系了。

接口的加载过程

接口的加载过程与类加载过程稍微有点不同,针对接口需要做一些特殊的说明:接口也有初始化过程,这点与类是一致的,上面的代码都是用静态语句块”static{}“来输出初始化信息的,而接口中不能使用”static{}“语句块,但是编译器仍然会为接口生成”()”类构造器,用于初始化接口中所定义的成员变量。接口与类真正有所区别的是前面讲述的5种“有且只有”需要开始初始化场景中的第三种:当一个类在初始化时,要求其父类全部都已经初始化过了,但是在接口在初始化的时候,并不要求其父接口都完成了初始化,只要在真正使用到父接口的时候(如引用接口中定义的常量)才会初始化

上一篇:word之高级


下一篇:阿里云提醒 网站被WebShell木马后门的处理过程