python – gunicorn django上的CRITICAL WORKER TIMEOUT错误

我试图将word2vec模型保存并保存然后根据该模态创建一些集群,它在本地运行正常但是当我创建docker图像并使用gunicorn运行时,它总是给我超时错误,我尝试了所描述的解决方案here但是它没有为我锻炼

我在用

python 3.5
gunicorn 19.7.1
gevent 1.2.2
eventlet 0.21.0

这是我的gunicorn.conf文件

#!/bin/bash

# Start Gunicorn processes
echo Starting Gunicorn.
exec gunicorn ReviewsAI.wsgi:application \
    --bind 0.0.0.0:8000 \
    --worker-class eventlet
    --workers 1
    --timeout 300000
    --graceful-timeout 300000
    --keep-alive 300000

我也尝试过gevent的工作类,也同步但它没有用.任何人都可以告诉我为什么这个超时错误不断发生.谢谢

这是我的日志

Starting Gunicorn.
[2017-11-10 06:03:45 +0000] [1] [INFO] Starting gunicorn 19.7.1
[2017-11-10 06:03:45 +0000] [1] [INFO] Listening at: http://0.0.0.0:8000 (1)
[2017-11-10 06:03:45 +0000] [1] [INFO] Using worker: eventlet
[2017-11-10 06:03:45 +0000] [8] [INFO] Booting worker with pid: 8
2017-11-10 06:05:00,307 : INFO : collecting all words and their counts
2017-11-10 06:05:00,309 : INFO : PROGRESS: at sentence #0, processed 0 words, keeping 0 word types
2017-11-10 06:05:00,737 : INFO : collected 11927 word types from a corpus of 1254665 raw words and 126 sentences
2017-11-10 06:05:00,738 : INFO : Loading a fresh vocabulary
2017-11-10 06:05:00,916 : INFO : min_count=1 retains 11927 unique words (100% of original 11927, drops 0)
2017-11-10 06:05:00,917 : INFO : min_count=1 leaves 1254665 word corpus (100% of original 1254665, drops 0)
2017-11-10 06:05:00,955 : INFO : deleting the raw counts dictionary of 11927 items
2017-11-10 06:05:00,957 : INFO : sample=0.001 downsamples 59 most-common words
2017-11-10 06:05:00,957 : INFO : downsampling leaves estimated 849684 word corpus (67.7% of prior 1254665)
2017-11-10 06:05:00,957 : INFO : estimated required memory for 11927 words and 200 dimensions: 25046700 bytes
2017-11-10 06:05:01,002 : INFO : resetting layer weights
2017-11-10 06:05:01,242 : INFO : training model with 4 workers on 11927 vocabulary and 200 features, using sg=0 hs=0 sample=0.001 negative=5 window=4
2017-11-10 06:05:02,294 : INFO : PROGRESS: at 6.03% examples, 247941 words/s, in_qsize 0, out_qsize 7
2017-11-10 06:05:03,423 : INFO : PROGRESS: at 13.65% examples, 269423 words/s, in_qsize 0, out_qsize 7
2017-11-10 06:05:04,670 : INFO : PROGRESS: at 23.02% examples, 286330 words/s, in_qsize 8, out_qsize 11
2017-11-10 06:05:05,745 : INFO : PROGRESS: at 32.70% examples, 310218 words/s, in_qsize 0, out_qsize 7
2017-11-10 06:05:07,054 : INFO : PROGRESS: at 42.06% examples, 308128 words/s, in_qsize 8, out_qsize 11
2017-11-10 06:05:08,123 : INFO : PROGRESS: at 51.75% examples, 320675 words/s, in_qsize 0, out_qsize 7
2017-11-10 06:05:09,355 : INFO : PROGRESS: at 61.11% examples, 320556 words/s, in_qsize 8, out_qsize 11
2017-11-10 06:05:10,436 : INFO : PROGRESS: at 70.79% examples, 328012 words/s, in_qsize 0, out_qsize 7
2017-11-10 06:05:11,663 : INFO : PROGRESS: at 80.16% examples, 327237 words/s, in_qsize 8, out_qsize 11
2017-11-10 06:05:12,752 : INFO : PROGRESS: at 89.84% examples, 332298 words/s, in_qsize 0, out_qsize 7
2017-11-10 06:05:13,784 : INFO : PROGRESS: at 99.21% examples, 336724 words/s, in_qsize 0, out_qsize 9
2017-11-10 06:05:13,784 : INFO : worker thread finished; awaiting finish of 3 more threads
2017-11-10 06:05:13,784 : INFO : worker thread finished; awaiting finish of 2 more threads
2017-11-10 06:05:13,784 : INFO : worker thread finished; awaiting finish of 1 more threads
2017-11-10 06:05:13,784 : INFO : worker thread finished; awaiting finish of 0 more threads
2017-11-10 06:05:13,784 : INFO : training on 6273325 raw words (4248672 effective words) took 12.5s, 339100 effective words/s
2017-11-10 06:05:13,785 : INFO : saving Word2Vec object under trained_models/mobile, separately None
2017-11-10 06:05:13,785 : INFO : not storing attribute syn0norm
2017-11-10 06:05:13,785 : INFO : not storing attribute cum_table
2017-11-10 06:05:14,026 : INFO : saved trained_models/mobile
[2017-11-10 06:05:43 +0000] [1] [CRITICAL] WORKER TIMEOUT (pid:8)
2017-11-10 06:05:43,712 : INFO : precomputing L2-norms of word weight vectors
[2017-11-10 06:05:44 +0000] [14] [INFO] Booting worker with pid: 14

解决方法:

我遇到了类似的问题.它解决了我将gunicorn的版本更新到19.9.0

gunicorn 19.9.0

对于可能遇到同样问题的其他人 – 确保添加超时.我个人用

gunicorn app.wsgi:application -w 2 -b:8000 –timeout 120

上一篇:python – 金字塔gunicorn和女服务员


下一篇:用nginx和gunicorn运行多个django项目