spoj TSUM - Triple Sums fft+容斥

题目链接


首先忽略 i < j < k这个条件。

那么我们构造多项式

\[A(x) = \sum_{1<=i<=N} x^{A_i}
\]

显然答案就是 $ A^3(x) $中 $ x^S $的系数。

现在我们考虑容斥:

  1. $ (\sum_{}x)^3 = \sum_{}x^3 + 3\sum_{}x^2 y + 6\sum_{}xyz $
  2. $ (\sum_{}x^2)(\sum_{}x) = \sum_{}x^3 + \sum_{}x^2 y $
  3. $ (\sum_{}x)^3 = \sum_{}x^3 \(
    <br>
    <br>
    由上面三个式子 我们可以推导出<br><br>
    \) \sum_{}xyz = \frac {(\sum_{}x)^3 - 3(\sum_{}x^2)(\sum_{}x) + 2\sum_{}x^3}{6} $

1式中的系数3, 是因为相当于从3个(x+y+z)中选2个x和一个y, 那么就是$ C_3^2 \cdotp C_1^1 $

6 就是选一个x一个y一个z, 显然是 $ C_3^1 \cdotp C_2^1 $



然后问题就解决了, 套fft模板就好。





第一次用markdown还有点小激动。

```C++
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt cmx;
typedef pair pll;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int mod = 1e9+7;
const int inf = 1061109567;
const int dir[][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} };
const int maxn = 2e5+5;
int c[maxn], val[maxn], a[maxn], b[maxn];
cmx x[maxn], y[maxn];
void change(cmx x[], int len) {
int i, j, k;
for(i = 1, j = len/2; i = k) {
j -= k;
k /= 2;
}
if(j >n;
for(int i = 0; i

上一篇:Java HashSet和HashMap源码剖析


下一篇:NLP文本相似度