给定一个包含 n 个点(编号为 1∼n)的无向图,初始时图中没有边。
现在要进行 m个操作,操作共有三种:
C a b,在点 a和点 b 之间连一条边,a 和 b可能相等;
Q1 a b,询问点 a和点 b 是否在同一个连通块中,a 和 b可能相等;
Q2 a,询问点 a所在连通块中点的数量;
输入格式
第一行输入整数 n和 m。
接下来 m行,每行包含一个操作指令,指令为 C a b,Q1 a b 或 Q2 a 中的一种。
输出格式
对于每个询问指令 Q1 a b,如果 a和 b在同一个连通块中,则输出 Yes,否则输出 No。
对于每个询问指令 Q2 a,输出一个整数表示点 a所在连通块中点的数量
每个结果占一行。
数据范围
1≤n,m≤10^5
输入样例:
5 5
C 1 2
Q1 1 2
Q2 1
C 2 5
Q2 5
输出样例:
Yes
2
3
#include <iostream> using namespace std; const int N = 100010; int n, m; int p[N], cnt[N]; int find(int x) { if (p[x] != x) p[x] = find(p[x]); return p[x]; } int main() { cin >> n >> m; for (int i = 1; i <= n; i ++ ) { p[i] = i; cnt[i] = 1; } while (m -- ) { string op; int a, b; cin >> op; if (op == "C") { cin >> a >> b; a = find(a), b = find(b); if (a != b) { p[a] = b; cnt[b] += cnt[a]; } } else if (op == "Q1") { cin >> a >> b; if (find(a) == find(b)) puts("Yes"); else puts("No"); } else { cin >> a; cout << cnt[find(a)] << endl; } } return 0; }