tf-idf算法

import numpy as np
from collections import Counter
import itertools
import matplotlib.pyplot as plt
docs = [
    "it is a good day, I like to stay here",
    "I am happy to be here",
    "I am bob",
    "it is sunny today",
    "I have a party today",
    "it is a dog and that is a cat",
    "there are dog and cat on the tree",
    "I study hard this morning",
    "today is a good day",
    "tomorrow will be a good day",
    "I like coffee, I like book and I like apple",
    "I do not like it",
    "I am kitty, I like bob",
    "I do not care who like bob, but I like kitty",
    "It is coffee time, bring your cup",
]
docs_words=[d.replace(",","").split(" ") for d in docs]
#itertools.chain(*iterables) 参数可以传入任意的序列,个数不限
#set()函数创建一个无序不重复元素集
#获取所有文档中的单词,并且不重复
vocab=set(itertools.chain(*docs_words))
#enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标
v2i={v:i for i,v in enumerate(vocab)}
#:items() 方法把字典中每对 key 和 value 组成一个元组,并把这些元组放在列表中返回。
i2v={i:v for v,i in v2i.items()}

def safe_log(x):
    mask=x!=0
    x[mask]=np.log(x[mask])
    return x

# lambda 函数是匿名的:
# 所谓匿名函数,通俗地说就是没有名字的函数。lambda函数没有名字。
# lambda 函数有输入和输出:
# 输入是传入到参数列表argument_list的值,输出是根据表达式expression计算得到的值。
# lambda 函数拥有自己的命名空间:
# 不能访问自己参数列表之外或全局命名空间里的参数,只能完成非常简单的功能。
# lambda x, y: x*y			# 函数输入是x和y,输出是它们的积x*y

# (axis=1)与(axis=0)区别
# 使用0值表示沿着每一列或行标签\索引值向下执行方法
# 使用1值表示沿着每一行或者列标签模向执行对应的方法
# 按行相加,并且(keepdims)保持其二维特性
#print(np.sum(a, axis=1, keepdims=True))
tf_methods={
         "log": lambda x: np.log(1+x),
        "augmented": lambda x: 0.5 + 0.5 * x / np.max(x, axis=1, keepdims=True),
        "boolean": lambda x: np.minimum(x, 1),
        "log_avg": lambda x: (1 + safe_log(x)) / (1 + safe_log(np.mean(x, axis=1, keepdims=True))),
}


idf_methods = {
        "log": lambda x: 1 + np.log(len(docs) / (x+1)),
        "prob": lambda x: np.maximum(0, np.log((len(docs) - x) / (x+1))),
        "len_norm": lambda x: x / (np.sum(np.square(x))+1),
    }
# word_counts = Counter(words)
# # 出现频率最高的3个单词
# top_three = word_counts.most_common(3)
# print(top_three)
# [('eyes', 8), ('the', 5), ('look', 4)]
def get_tf(method="log"):
    # term frequency: how frequent a word appears in a doc
    _tf = np.zeros((len(vocab), len(docs)), dtype=np.float64)    # [n_vocab, n_doc]
    for i, d in enumerate(docs_words):
        counter = Counter(d)
        for v in counter.keys():
            _tf[v2i[v], i] = counter[v] / counter.most_common(1)[0][1]

    weighted_tf = tf_methods.get(method, None)
    if weighted_tf is None:
        raise ValueError
    return weighted_tf(_tf)


def get_idf(method="log"):
    # inverse document frequency: low idf for a word appears in more docs, mean less important
    df = np.zeros((len(i2v), 1))
    for i in range(len(i2v)):
        d_count = 0
        for d in docs_words:
            d_count += 1 if i2v[i] in d else 0
        df[i, 0] = d_count

    idf_fn = idf_methods.get(method, None)
    if idf_fn is None:
        raise ValueError
    #如果包含词条t的文档越少, IDF越大,则说明词条具有很好的类别区分能力
    return idf_fn(df)


def cosine_similarity(q, _tf_idf):
    unit_q = q / np.sqrt(np.sum(np.square(q), axis=0, keepdims=True))
    unit_ds = _tf_idf / np.sqrt(np.sum(np.square(_tf_idf), axis=0, keepdims=True))
    similarity = unit_ds.T.dot(unit_q).ravel()
    return similarity


def docs_score(q, len_norm=False):
    q_words = q.replace(",", "").split(" ")

    # add unknown words
    unknown_v = 0
    for v in set(q_words):
        if v not in v2i:
            v2i[v] = len(v2i)
            i2v[len(v2i)-1] = v
            unknown_v += 1
    if unknown_v > 0:
        _idf = np.concatenate((idf, np.zeros((unknown_v, 1), dtype=np.float)), axis=0)
        _tf_idf = np.concatenate((tf_idf, np.zeros((unknown_v, tf_idf.shape[1]), dtype=np.float)), axis=0)
    else:
        _idf, _tf_idf = idf, tf_idf
    counter = Counter(q_words)
    q_tf = np.zeros((len(_idf), 1), dtype=np.float)     # [n_vocab, 1]
    for v in counter.keys():
        q_tf[v2i[v], 0] = counter[v]

    q_vec = q_tf * _idf            # [n_vocab, 1]
    print(q_vec.shape)
    print(_tf_idf.shape)

    q_scores = cosine_similarity(q_vec, _tf_idf)
    if len_norm:
        len_docs = [len(d) for d in docs_words]
        q_scores = q_scores / np.array(len_docs)
    print(q_scores.shape)
    return q_scores


def get_keywords(n=2):
    for c in range(3):
        col = tf_idf[:, c]
        idx = np.argsort(col)[-n:]
        print("doc{}, top{} keywords {}".format(c, n, [i2v[i] for i in idx]))


tf = get_tf()           # [n_vocab, n_doc]
idf = get_idf()         # [n_vocab, 1]
tf_idf = tf * idf       # [n_vocab, n_doc]
# print("tf shape(vecb in each docs): ", tf.shape)
# print("\ntf samples:\n", tf[:2])
# print("\nidf shape(vecb in all docs): ", idf.shape)
# print("\nidf samples:\n", idf[:2])
# print("\ntf_idf shape: ", tf_idf.shape)
# print("\ntf_idf sample:\n", tf_idf[:2])


# test
get_keywords()
q = "I get a coffee cup"
scores = docs_score(q)
print(scores)
#argsort将数组x中的元素从小到大排序
d_ids = scores.argsort()[-3:][::-1]
print("\ntop 3 docs for '{}':\n{}".format(q, [docs[i] for i in d_ids]))

  用tf-idf算法找到与一个文档相似的其他文档。首先要统计出这些文档中出现的所有词,计算每一个文档中词的tf值,tf是用一个文档中出现词w的个数初一文档的总次数,除以总词数是为了进行归一化处理。之后计算idf值,用文档的总数除以包含该词的文档数,最后对得到的商取对数,如果包含词的文档越少,idf值就越大,说明该词有很好的分辨能力。

上一篇:基于TF-IDF和KNN的模糊字符串匹配优化的实际应用


下一篇:菜鸟学Java(二十二)——重新认识泛型