可迭代对象
关注公众号“轻松学编程”了解更多。
1、列表生成式
list = [result for x in range(m, n)]
g1 = (i for i in range(101))
print(type(g1))
print(g1)
print(g1.__next__())
输出:
<class 'generator'>
<generator object <genexpr> at 0x0000024E6AC08F10>
0
g1 = (i for i in range(11))
list1 = [i for i in g1]
print(list1)
输出:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
2、可迭代对象
1.可以直接作用于for循环的对象统称为可迭代对象,我们称之为:Iterator
2.我们可以使用isintance()判断一个对象是否是Iterator对象
3.可以直接作用于for循环的数据类型有以下几种
a.集合数据类型:如list、tuple、dict、set和string
b.生成器(generator):就是一个能返回迭代器的函数,其实就是定义一个迭代算法,可以理解为一个特殊的迭代器。
生成器:
通过列表生成式,我们可以直接创建一个列表,但是,受到内存限制,列表容量肯定是有限的,如果我们仅仅需要访问前面几个元素,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器(Generator)
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator。
g1 = (i for i in range(11))
print(g1)
for i in range(11):
print(next(g1),end='\t')
输出:
<generator object <genexpr> at 0x00000207F5C69678>
0 1 2 3 4 5 6 7 8 9 10
注意:使用Iterator判断的时候需要导入Iterable的包
from collections import Iterable
print(isinstance([],Iterable))
print(isinstance((),Iterable))
print(isinstance("",Iterable))
print(isinstance({},Iterable))
print(isinstance({1,2,3},Iterable))
print({1,2,3})
print(isinstance(1,Iterable))
print(isinstance(1.2,Iterable))
g1 = (i for i in range(101))
print(isinstance(g1,Iterable))
输出:
True
True
True
True
True
{1, 2, 3}
False
False
True
3、迭代器
迭代器:不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,
直到最后出现StopIteration错误,表示无法返回下一个值
可以被next()函数调用并不断返回下一个值的对象称为迭代器(Iterator对象)
可以使用isinstance()函数判断一个对象是否是Iterator对象。
注意:可迭代对象不一定是迭代器,但是迭代器一定是迭代对象。
可迭代对象与迭代器的关系:
可迭代对象包含迭代器
from collections import Iterator
print(isinstance([],Iterator))
print(isinstance((),Iterator))
print(isinstance("",Iterator))
print(isinstance({},Iterator))
print(isinstance({1,2,3},Iterator))
print({1,2,3})
print(isinstance(1,Iterator))
print(isinstance(1.2,Iterator))
g1 = (i for i in range(101))
print(isinstance(g1,Iterator))
输出:
False
False
False
False
False
{1, 2, 3}
False
False
True
4、生成器
跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。
调用一个生成器函数,返回的是一个迭代器对象。
以下实例使用 yield 实现斐波那契数列:
生成器:使用了 yield 的函数被称为生成器(generator)
import sys
def fibonacci(n): # 生成器函数 - 斐波那契
a, b, counter = 0, 1, 0
while True:
if counter > n:
return
yield a
a, b = b, a + b
counter += 1
if __name__ == '__main__':
f = fibonacci(10) # f 是一个迭代器,由生成器返回生成
while True:
try:
print(next(f), end=" ")
except StopIteration:
sys.exit()
输出:
0 1 1 2 3 5 8 13 21 34 55
5、 Iterator转换
可以通过Iter()函数将list、tuple、dict、string转换为Iterator对象。
from collections import Iterator
list1 = [i for i in range(11)]
print(isinstance(list1,Iterator))
iter1 = iter(list1)
print(isinstance(iter1,Iterator))
for i in range(11):
print(next(iter1),end='\t')
输出:
False
True
0 1 2 3 4 5 6 7 8 9 10
后记
【后记】为了让大家能够轻松学编程,我创建了一个公众号【轻松学编程】,里面有让你快速学会编程的文章,当然也有一些干货提高你的编程水平,也有一些编程项目适合做一些课程设计等课题。
也可加我微信【1257309054】,拉你进群,大家一起交流学习。
如果文章对您有帮助,请我喝杯咖啡吧!
公众号
关注我,我们一起成长~~