2019.03.09 bzoj5371: [Pkusc2018]星际穿越(主席树)

传送门

题意简述:

给一个序列,对于第iii个位置,它跟[limi,i−1][lim_i,i-1][limi​,i−1]这些位置都存在一条长度为111的无向边。

称dist(u,v)dist(u,v)dist(u,v)表示(u,v)(u,v)(u,v)间最短路长度。

qqq次询问,每次给出l,r,xl,r,xl,r,x,求∑i=lrdist(i,x)\sum_{i=l}^rdist(i,x)∑i=lr​dist(i,x)


思路:

有一个显然的结论,从iii走到它之前的点,要么向右边走一次之后一直向左走,要么一直向左走。

对每个点dpdpdp出它最多向右边走一次然后向左走一步能够到达的最小编号,称为mnimn_imni​。

这样对于编号在[limi,i−1][lim_i,i-1][limi​,i−1]间的点只用直接走一次,对于编号在[1,limi−1][1,lim_i-1][1,limi​−1]的点可以先走到mnimn_imni​,然后走到iii,这样用主席树维护[1,i−1][1,i-1][1,i−1]到iii的最短距离,iii对应的线段树用mnimn_imni​的更新过来即可。

提示:bzoj轻微卡主席树,最好用fread优化

代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
const int rlen=1<<18|1;
inline char gc(){
	static char buf[rlen],*ib,*ob;
	(ib==ob)&&(ob=(ib=buf)+fread(buf,1,rlen,stdin));
	return ib==ob?-1:*ib++;
}
inline int read(){
	int ans=0;
	char ch=gc();
	while(!isdigit(ch))ch=gc();
	while(isdigit(ch))ans=((ans<<2)+ans<<1)+(ch^48),ch=gc();
	return ans;
}
const int N=3e5+5;
int rt[N],lim[N],n,mn[N];
inline int gcd(int a,int b){while(b){int t=a;a=b,b=t-t/a*a;}return a;}
namespace SGT{
	#define lc (son[p][0])
	#define rc (son[p][1])
	#define mid (l+r>>1)
	int sum[N*30],add[N*30],son[N*30][2],tot=0;
	inline void update(int&p,int l,int r,int ql,int qr){
		int o=++tot;
		sum[o]=sum[p],add[o]=add[p],son[o][0]=lc,son[o][1]=rc;
		p=o;
		if(ql<=l&&r<=qr){++add[p];return;}
		sum[p]+=min(qr,r)-max(ql,l)+1;
		if(qr<=mid)update(lc,l,mid,ql,qr);
		else if(ql>mid)update(rc,mid+1,r,ql,qr);
		else update(lc,l,mid,ql,mid),update(rc,mid+1,r,mid+1,qr);
	}
	inline int query(int p,int l,int r,int ql,int qr){
		if(!p)return 0;
		int ret=add[p]*(min(qr,r)-max(ql,l)+1);
		if(ql<=l&&r<=qr)return sum[p]+ret;
		if(qr<=mid)return query(lc,l,mid,ql,qr)+ret;
		if(ql>mid)return query(rc,mid+1,r,ql,qr)+ret;
		return query(lc,l,mid,ql,mid)+query(rc,mid+1,r,mid+1,qr)+ret;
	}
	#undef lc
	#undef rc
	#undef mid
}
int main(){
	n=read();
	for(ri i=2;i<=n;++i)lim[i]=mn[i]=read();
	for(ri i=n-1;i;--i)mn[i]=min(mn[i+1],mn[i]);
	for(ri i=2;i<=n;++i)rt[i]=rt[mn[i]],SGT::update(rt[i],1,n,1,i-1);
	for(ri tt=read(),ans,len,g,l,r,x;tt;--tt){
		l=read(),r=read(),x=read();
		ans=len=r-l+1;
		if(l<lim[x])ans+=SGT::query(rt[lim[x]],1,n,l,min(lim[x]-1,r));
		g=gcd(ans,len);
		cout<<ans/g<<'/'<<len/g<<'\n';
	}
	return 0;
}
上一篇:轻量级前端MVVM框架avalon - 模型转换


下一篇:在代理中托管特殊方法的python代码实现