Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Given the following binary tree: root = [3,5,1,6,2,0,8,null,null,7,4]
Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 Output: 3 Explanation: The LCA of nodes5
and1
is3.
Example 2:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 Output: 5 Explanation: The LCA of nodes5
and4
is5
, since a node can be a descendant of itself according to the LCA definition.
普通二叉树,求树中两个节点的最低公共祖先
C++:
1 /** 2 * Definition for a binary tree node. 3 * struct TreeNode { 4 * int val; 5 * TreeNode *left; 6 * TreeNode *right; 7 * TreeNode(int x) : val(x), left(NULL), right(NULL) {} 8 * }; 9 */ 10 class Solution { 11 public: 12 TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { 13 if (root == NULL || root == p || root == q){ 14 return root ; 15 } 16 TreeNode* left = lowestCommonAncestor(root->left , p , q) ; 17 TreeNode* right = lowestCommonAncestor(root->right , p , q) ; 18 if (left == NULL){ 19 return right ; 20 }else if (right == NULL){ 21 return left ; 22 }else{ 23 return root ; 24 } 25 } 26 };