LOJ2540 [PKUWC2018] 随机算法 【状压DP】

题目分析:

听说这题考场上能被$ O(4^n) $的暴力水过,难不成出题人是毕姥爷?

首先思考一个显而易见的$ O(n^2*2^n) $的暴力DP。一般的DP都是考虑最近的加入了哪个点,然后删除后递归进行状压DP。由于这道题的题目询问方式是反过来的,处理方式也反过来。

令$ f[n][S] $表示当前有$ S $这些点,期望这些点能够构成独立集大小为$ n $。正向的考虑选择了哪个点,并把与这个点有连边的所有点在集合内进行删除,令找到的新状态为$ f[n-1][P] $。我们把$ P $中的结点与$ S $中不在$ P $中的点进行标号拼接。写成语言就是$ f[n][S]+=f[n-1][P] * \binom{|S|-1}{|P|} * |P|! $ 由于对于$ S $的每一个点都需要转移一遍,时间复杂度就变成了$ O(n^2*2^n) $。虽然跑得不快,但是由于冗余状态较多,考场上一定比例的人使用这个算法通过了这个题。

现在来考虑把它优化到$ O(n*2^n) $。由于题目期望着你获得一个最大独立集,所以我们可以发现第一维是没有必要的。因为对于一个目标状态$ S $,我们如果知道$ S $对应的最大独立集的大小的话,那么我们必定是奔着这个大小而去的。现在我们用$ g[S] $来表示$ S $对应的最大独立集大小,那么这是一个普及组题目,枚举选点然后求max就行了。再对于$ f[S] $,求$ S $对应的最大独立集大小。首先记录$ g[S] $,然后找删除某个点后的集合变为了$ g[S]-1 $的就是我们想要的转移方案,同样采用带标号的拼接。因为我们没有了第一维的负担,所以时间复杂度骤降为了$ O(n*2^n) $.

ps:我终于会用letax数学公式啦。

代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn = ;
const int mod = ; int n,m;
int connect[maxn];
int f[(<<)+],g[(<<)+],sz[(<<)+];
int arr[(<<)+],C[maxn][maxn],fac[]; int fast_pow(int now,int pw){
if(pw == ) return now;
int z = fast_pow(now,pw/);
z = (1ll*z*z) % mod;
if(pw & ) z = (1ll*z*now)%mod;
return z;
} void read(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
int u,v; scanf("%d%d",&u,&v);
connect[u] |= (<<v-);
connect[v] |= (<<u-);
}
for(int i=;i<=n;i++) connect[i] |= (<<i-);
} void init(){
C[][] = ;
for(int i=;i<=n;i++){
C[i][] = C[i][i] = ;
for(int j=;j<i;j++) C[i][j] = (C[i-][j-]+C[i-][j])%mod;
}
for(int i=;i<(<<n);i++){
for(int j=;j<n;j++) if((<<j)&i) sz[i]++;
}
fac[] = ;
for(int i=;i<=n;i++) fac[i] = (1ll*fac[i-]*i)%mod;
} void dfs(int now){
arr[now] = ;
for(int i=;i<=n;i++){
if(!((<<i-)&now)) continue;
int p = now - (now&connect[i]);
if(!arr[p]) dfs(p);
g[now] = max(g[now],g[p]+);
}
} void dfs2(int now){
arr[now] = ;
for(int i=;i<=n;i++){
if(!((<<i-)&now)) continue;
int kk = (now&connect[i]),p = now - kk;
if(g[p] != g[now]-) continue;
if(!arr[p]) dfs2(p);
f[now]+=((1ll*C[sz[now]-][sz[p]]*fac[sz[kk]-])%mod)*f[p]%mod;
f[now] %= mod;
}
} void work(){
init();
g[] = ; arr[] = ;
for(int i=;i<(<<n);i++) if(!arr[i]) dfs(i);
memset(arr,,sizeof(arr));
f[] = ; arr[] = ;
dfs2((<<n)-);
int ans = f[(<<n)-];
ans = (1ll*fast_pow(fac[n],mod-)*ans)%mod;
printf("%d",ans);
} int main(){
read();
work();
return ;
}
上一篇:谈"自驱力"


下一篇:【VB超简单入门】一、写在前面