卷积神经网络的网络结构——ResNet

                                               

ResNet由微软研究院的kaiming He等4名华人提出,通过使用Residual Unit成功训练152层深的神经网络,在ILSVRC 2015比赛中获得了冠军,取得3.57%的top5错误率,同时参数量却比VGGNet低,效果非常突出。ResNet的结构可以极快地加速超深神经网络的训练,模型的准确率也有非常大的提升。
ResNet最初的灵感出自这个问题:在不断增加神经网络的深度时,会出现一个Degradation(退化)的问题,即准确率会先上升然后达到饱和,再持续增加深度则会导致准确率下降。这并不是过拟合的问题,因为不光在测试集上误差增大,训练集本身误差也会增大。
卷积神经网络的网络结构——ResNet

在使用了ResNet的结构后,可以发现层数不断加深导致的训练集上误差增大的现象被消除了,ResNet网络的训练误差会随着层数增加而逐渐减少,并且在测试集上的表现也会变好。在ResNet推出后不久,Google就借鉴了ResNet的精髓,提出了Inception V4和Inception ResNet V2,并通过融合这两个模型,在ILSVRC数据集上取得了惊人的3.08%的错误率。可见,ResNet及其思想对卷积神经网络研究的贡献确实非常显著,具有很强的推广性。


         
上一篇:AI ResNet


下一篇:ResNeXt