[BZOJ]1052 覆盖问题(HAOI2007)

  三矩形覆盖问题啊……不过听说FJOI还出过双圆覆盖问题?

Description

  某人在山上种了N棵小树苗。冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他决定用3个L*L的正方形塑料薄膜将小树遮起来。我们不妨将山建立一个平面直角坐标系,设第i棵小树的坐标为(Xi,Yi),3个L*L的正方形的边要求平行与坐标轴,一个点如果在正方形的边界上,也算作被覆盖。当然,我们希望塑料薄膜面积越小越好,即求L最小值。

Input

  第一行有一个正整数N,表示有多少棵树。接下来有N行,第i+1行有2个整数Xi,Yi,表示第i棵树的坐标。

Output

  一行,输出最小的L值。

Sample Input

  4
  0 1
  0 -1
  1 0
  -1 0

Sample Output

  1

HINT

  1 <= N <= 20000,坐标绝对值 <= 10^9,保证不会有2棵树的坐标相同。

Solution

  三正方形有些复杂,我们不如先从单正方形,双正方形入手。单正方形的答案就是max(横坐标极差,纵坐标极差)。

  双正方形不好贪心,所以我们二分一下答案,判断两个正方形能否覆盖所有点。

  我们就思考一下,这两个正方形放在哪里,才能尽量覆盖所有点。

  发现覆盖的形式不外乎两种情况,一种是 一个在左上一个在右下 ,另一种是 一个在右上一个在左下。

  假设是 一个在左上一个在右下 的情况,处于左上方的正方形一定要盖住横坐标最左的和纵坐标最上的点,因为另一个正方形不会帮你干这件事。

  同理,处于右下方的正方形也一样。

  所以,两个正方形放置的位置也就确定了,剩下的事情就是O(n)扫一遍判断是否在正方形内了。

  那么三正方形其实也是极其类似的做法。

  还是二分答案,考虑三个正方形的放法,发现情况有一点多。

  但是有一点一定是不变的,那就是必定有一个正方形,处于左上、右上、左下、右下的其中一个角!

  那么我们就枚举这个角,删去这个角内的点,剩下的,就是一个双正方形覆盖问题!

  时间复杂度O(nlogn)。

#include <cstdio>
#include <algorithm>
#include <cstring>
#define MN 20005
#define INF 0x3FFFFFFF
using namespace std;
struct node{int x,y;}a[MN];
int b[MN];
int bin,n,L,R; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} bool cov(int len)
{
if (!bin) return true;
register int i,lm,rm,dm,um;
lm=dm=INF; rm=um=-INF;
for (i=;i<=bin;++i)
lm=min(lm,a[b[i]].x),rm=max(rm,a[b[i]].x),
dm=min(dm,a[b[i]].y),um=max(um,a[b[i]].y);
for (i=;i<=bin;++i)
if (!(a[b[i]].x<=lm+len&&a[b[i]].y<=dm+len
||a[b[i]].x>=rm-len&&a[b[i]].y>=um-len)) break;
if (i>bin) return true;
for (i=;i<=bin;++i)
if (!(a[b[i]].x<=lm+len&&a[b[i]].y>=um-len
||a[b[i]].x>=rm-len&&a[b[i]].y<=dm+len)) break;
if (i>bin) return true;
return false;
} void del(int lm,int dm,int rm,int um)
{
register int i;
for (bin=,i=;i<=n;++i)
if (a[i].x<lm||a[i].x>rm||a[i].y<dm||a[i].y>um) b[++bin]=i;
} int main()
{
register int i,lm,rm,dm,um;
lm=dm=INF; rm=um=-INF;
n=read();
for (i=;i<=n;++i)
a[i].x=read(),a[i].y=read(),
lm=min(lm,a[i].x),rm=max(rm,a[i].x),
dm=min(dm,a[i].y),um=max(um,a[i].y);
L=; R=max(um-dm,rm-lm);
while (L<R)
{
int mid=L+R>>;
for (i=;i<=;++i)
{
if (i==) del(lm,dm,lm+mid,dm+mid);
else if (i==) del(lm,um-mid,lm+mid,um);
else if (i==) del(rm-mid,dm,rm,dm+mid);
else if (i==) del(rm-mid,um-mid,rm,um);
if (cov(mid)) break;
}
if (i<=) R=mid; else L=mid+;
}
printf("%d",L);
}

Last Word

  没有想到小C能抢到这题的一个rank1,先放张图留念,指不定哪天就被某大神艹下去了。

    [BZOJ]1052 覆盖问题(HAOI2007)

上一篇:pyqt4桌面软件各种画布组合结构实例


下一篇:Minesweeper PC/UVa IDs: 110102/10189, Popularity: A,Success rate: high Level: 1