优化中的subgradient方法

哎。刚刚submit上paper比較心虚啊。无心学习。还是好好码码文字吧。

subgradient介绍

subgradient中文名叫次梯度。和梯度一样,全然能够多放梯度使用。至于为什么叫子梯度,是由于有一些凸函数是不可导的,没法用梯度。所以subgradient就在这里使用了。

注意到。子梯度也是求解凸函数的。仅仅是凸函数不是处处可导。

f:X→R是一个凸函数,X∈Rn是一个凸集。

若是f在x′处∇f(x′)可导。考虑一阶泰勒展开式:

f(x)≥f(x′)+∇(f(x′)T(x−x′),∀x∈X

能够得到f(x)的一个下届(f(x)是一个凸函数)

若是f(x)在x′处不可导,仍然。能够得到一个f(x)的下届

f(x)≥f(x′)+gT(x−x′),∀x∈X

这个g就叫做f(x)的子梯度。g∈Rn

非常明显。在一个点会有不止一个次梯度,在点x全部f(x)的次梯度集合叫做此微分∂f(x)

优化中的subgradient方法

优化中的subgradient方法

优化中的subgradient方法

优化中的subgradient方法

优化中的subgradient方法

优化中的subgradient方法

优化中的subgradient方法

优化中的subgradient方法

我们能够看出,当f(x)是凸集而且在x附近有界时,∂f(x)是非空的,而且∂f(x)是一个闭凸集。

次梯度性质

∂f(x)={g}⇔f(x)可微并且g=∇f(x)

满足:

1)scaling:

∂(αf(x))=α∂f(x),if α>0

2)addition:

∂(f1(x)+f2(x))=∂fz(x)+∂f2(x)

3)point-wise maximum:f(x)=maxi=1,...,mfi(x)而且fi(x)是可微的,那么:

∂f(x)=Co{∇fi(x)∣fi(x)=f(x)}

即全部该点函数值等于最大值的函数的梯度的凸包。

在非约束最优化问题中。要求解一个凸函数f:Rn→R的最小值

x∗∈argminx∈Rnf(x)

非常显然,若是f可导。那么我们仅仅须要求解导数为0的点

f(x∗=minx∈Rn⇔0=∇f(x∗)

当f不可导的时候,上述条件就能够一般化成

f(x∗)=minx∈Rn⇔0∈∇f(x∗)

也即0满足次梯度的定义

f(x)≥f(x′)+0T(x−x′),∀x∈Rn

以下是次梯度法的一般方法:

1.t=1选择有限的正的迭代步长{αt}∞t=1

2.计算一个次梯度g∈∂f(xt)

3.更新xt+1=xt−αtgt

4.若是算法没有收敛。则t=t+1返回第二步继续计算

次梯度方法性质:

1.简单通用性:就是说第二步中,∂f(xt)不论什么一个次梯度都是能够的.

2.收敛性:仅仅要选择的步长合适。总会收敛的

3.收敛慢:须要大量的迭代才干收敛

4.非单调收敛:−gt不须要是下降方向。在这样的情况下,不能使用线性搜索选择合适的αt

5.没有非常好的停止准则

对于不同步长的序列的收敛结果

最好还是设ftbest=min{f(x1),..,f(xt)}是t次迭代中的最优结果

1.步长和不可消时(Non-summable diminishing step size):

limt→∞αt=0 而且∑∞t=1αt==∞

这样的情况能够收敛到最优解:limt→∞ftbest−f(x∗)=0

2.Constant step size:

αt=γ,where γ>0

收敛到次优解:limt→∞ftbest−f(x∗)≤αG2/2

3.Constant step length:

αt=γ||gt||(i.e. ||xt+1−xt||=γ),||g||≤G,∀g∈∂f

能够收敛到次优解limt→∞ftbest−f(x∗)≤γG/2

4.Polyak’s rule: αt=f(xt)−f(x∗)||gt||2

若是最优值f(x∗)可知则能够用这样的方法。

不等式约束的凸二次优化问题

问题formulate

一个不等式约束的凸二次优化问题能够表示为:

(w∗,b∗,ξ∗)=argminw,b,ξ[12||w||2+C∑i=1mξi]
s.t.       yi(wTxi+b)ξi≥1−ξi,   ≥0              i=1,⋯,m,i=1,⋯,m.

注意到ξi≥max(0,1−yi(wTxi+b)),而且当目标函数取得最优的时候,这里的等号是成立的,所以能够进行取代:

ξi=max(0,1−yi(wTxi+b))

所以就能够将这个二次悠哈问题改写成一个非约束凸优化问题

(w∗,b∗)=argminw,bf(w,b)=argminw,b[12||w||2f0(w,b)+C∑i=1mmax(0,1−yi(wTxi+b))fi(w,b)]

问题求解

由于

f0(w,b)=12||w||2

是可微的,而且

∂wf0(w,b)=w,  ∂bf0(w,b)=0

函数fi(w,b)=max0,1−yi(wTxi+b)是一个点最大值。所以其次微分能够写作,全部active function的梯度的convex combination

i-th function ∂wfi(w,b) ∂bfi(w,b)
I+={i|yi(wTxi+b)>1} 0 0
I0={i|yi(wTxi+b)=1} Co{0,−yixi} Co{0,−yi}
I−={i|yi(wTxi+b)<1} −yixi −yi

所以次微分能够写作∂f(w,b)=∂f0(w,b)+C∑mi=1∂fi(w,b)能够使用參数话的表示方法,设0≤βi≤1,i∈I0,所以就有g=[w′b′]∈∂f(x)

w′(β)b′(β)=w−C∑i∈I0βiyixi−C∑i∈I−yixi=−C∑i∈I0βiyi−C∑i∈I−yi
上一篇:Ubuntu 12.04嵌入式交叉编译环境arm-linux-gcc搭建过程


下一篇:C#中异常:“The type initializer to throw an exception(类型初始值设定项引发异常)”的简单分析与解决方法