哎。刚刚submit上paper比較心虚啊。无心学习。还是好好码码文字吧。
subgradient介绍
subgradient中文名叫次梯度。和梯度一样,全然能够多放梯度使用。至于为什么叫子梯度,是由于有一些凸函数是不可导的,没法用梯度。所以subgradient就在这里使用了。
注意到。子梯度也是求解凸函数的。仅仅是凸函数不是处处可导。
f:X→R是一个凸函数,X∈Rn是一个凸集。
若是f在x′处∇f(x′)可导。考虑一阶泰勒展开式:
能够得到f(x)的一个下届(f(x)是一个凸函数)
若是f(x)在x′处不可导,仍然。能够得到一个f(x)的下届
这个g就叫做f(x)的子梯度。g∈Rn
非常明显。在一个点会有不止一个次梯度,在点x全部f(x)的次梯度集合叫做此微分∂f(x)
我们能够看出,当f(x)是凸集而且在x附近有界时,∂f(x)是非空的,而且∂f(x)是一个闭凸集。
次梯度性质
满足:
1)scaling:
2)addition:
3)point-wise maximum:f(x)=maxi=1,...,mfi(x)而且fi(x)是可微的,那么:
即全部该点函数值等于最大值的函数的梯度的凸包。
在非约束最优化问题中。要求解一个凸函数f:Rn→R的最小值
非常显然,若是f可导。那么我们仅仅须要求解导数为0的点
当f不可导的时候,上述条件就能够一般化成
也即0满足次梯度的定义
以下是次梯度法的一般方法:
1.t=1选择有限的正的迭代步长{αt}∞t=1
2.计算一个次梯度g∈∂f(xt)
3.更新xt+1=xt−αtgt
4.若是算法没有收敛。则t=t+1返回第二步继续计算
次梯度方法性质:
1.简单通用性:就是说第二步中,∂f(xt)不论什么一个次梯度都是能够的.
2.收敛性:仅仅要选择的步长合适。总会收敛的
3.收敛慢:须要大量的迭代才干收敛
4.非单调收敛:−gt不须要是下降方向。在这样的情况下,不能使用线性搜索选择合适的αt
5.没有非常好的停止准则
对于不同步长的序列的收敛结果
最好还是设ftbest=min{f(x1),..,f(xt)}是t次迭代中的最优结果
1.步长和不可消时(Non-summable diminishing step size):
limt→∞αt=0 而且∑∞t=1αt==∞
这样的情况能够收敛到最优解:limt→∞ftbest−f(x∗)=0
2.Constant step size:
αt=γ,where γ>0
收敛到次优解:limt→∞ftbest−f(x∗)≤αG2/2
3.Constant step length:
αt=γ||gt||(i.e. ||xt+1−xt||=γ),||g||≤G,∀g∈∂f
能够收敛到次优解limt→∞ftbest−f(x∗)≤γG/2
4.Polyak’s rule: αt=f(xt)−f(x∗)||gt||2
若是最优值f(x∗)可知则能够用这样的方法。
不等式约束的凸二次优化问题
问题formulate
一个不等式约束的凸二次优化问题能够表示为:
注意到ξi≥max(0,1−yi(wTxi+b)),而且当目标函数取得最优的时候,这里的等号是成立的,所以能够进行取代:
ξi=max(0,1−yi(wTxi+b))
所以就能够将这个二次悠哈问题改写成一个非约束凸优化问题
问题求解
由于
是可微的,而且
∂wf0(w,b)=w, ∂bf0(w,b)=0
函数fi(w,b)=max0,1−yi(wTxi+b)是一个点最大值。所以其次微分能够写作,全部active function的梯度的convex combination
i-th function | ∂wfi(w,b) | ∂bfi(w,b) |
---|---|---|
I+={i|yi(wTxi+b)>1} | 0 | 0 |
I0={i|yi(wTxi+b)=1} | Co{0,−yixi} | Co{0,−yi} |
I−={i|yi(wTxi+b)<1} | −yixi | −yi |
所以次微分能够写作∂f(w,b)=∂f0(w,b)+C∑mi=1∂fi(w,b)能够使用參数话的表示方法,设0≤βi≤1,i∈I0,所以就有g=[w′b′]∈∂f(x)