【转载】【树状数组区间第K大/小】

原帖:http://www.cnblogs.com/zgmf_x20a/archive/2008/11/15/1334109.html

回顾树状数组的定义,注意到有如下两条性质:
一,c[ans]=sum of A[ans-lowbit(ans)+1 ... ans];
二,当ans=2^k时,
 c[ans]=sum of A[1 ... ans];

下面说明findK(k)如何运作:
1,设置边界条件ans,ans'<maxn且cnt<=k;
2,初始化cnt=c[ans],其中ans=2^k且k为满足边界条件的最大整数;
3,找到满足边界条件的最大的ans'使得ans'-lowbit(ans')=ans,即ans'满足c[ans']=A[ans+1 .. ans'](根据性质一),只要将c[ans']累加到cnt中(此时cnt=sum of A[1 ... ans'],根据性质二),cnt便可以作为k的逼近值;
4,重复第3步直到cnt已无法再逼近k,此时ans刚好比解小1,返回ans+1。

因此findk(k)的实质就是二分逼近

 /**********************************

 树状数组实现查找K小的元素

                   经典。

 限制:数据范围在1<<20 以内

 ***********************************/

 #include <iostream>

 using namespace std;

 #define maxn 1<<20

 int n,k;

 int c[maxn];

 int lowbit(int x){

     return x&-x;

 }

 void insert(int x,int t){

        while(x<maxn){

           c[x]+=t;

           x+=lowbit(x);    

        }

 }

 int find(int k){

     int cnt=,ans=;

     for(int i=;i>=;i--){

         ans+=(<<i);

         if(ans>=maxn || cnt+c[ans]>=k)ans-=(<<i);

         else cnt+=c[ans];

     }

     return ans+;

 }

 void input(){

        memset(c,,sizeof(c));

        int t;

        scanf("%d%d",&n,&k);

        for(int i=;i<n;i++){    

             scanf("%d",&t);

             insert(t,);

        }

        printf("%d\n",find(k));

 }

 int main(){

     int cases;

     scanf("%d",&cases);

     while(cases--){

         input();

     }

     return ;

 }
上一篇:android sqlite boolean 类型


下一篇:CentOS下j2ee环境搭建