MindSpore 计算框架 模型参数 和 优化器 参数的重新载入

本文主要内容源于:

https://www.mindspore.cn/tutorial/training/zh-CN/master/use/load_model_for_inference_and_transfer.html#id1

 

 

 

======================================================================

 

 

本地加载模型

用于推理验证

针对仅推理场景可以使用load_checkpoint把参数直接加载到网络中,以便进行后续的推理验证。

示例代码如下:

resnet = ResNet50()
load_checkpoint("resnet50-2_32.ckpt", net=resnet)
dateset_eval = create_dataset(os.path.join(mnist_path, "test"), 32, 1) # define the test dataset
loss = CrossEntropyLoss()
model = Model(resnet, loss, metrics={"accuracy"})
acc = model.eval(dataset_eval)

 

  • load_checkpoint方法会把参数文件中的网络参数加载到模型中。加载后,网络中的参数就是CheckPoint保存的。

  • eval方法会验证训练后模型的精度。

 

 

 

 

 

 

 

用于迁移学习

针对任务中断再训练及微调(Fine Tune)场景,可以加载网络参数和优化器参数到模型中。

示例代码如下:

# return a parameter dict for model
param_dict = load_checkpoint("resnet50-2_32.ckpt")
resnet = ResNet50()
opt = Momentum(resnet.trainable_params(), 0.01, 0.9)
# load the parameter into net
load_param_into_net(resnet, param_dict)
# load the parameter into optimizer
load_param_into_net(opt, param_dict)
loss = SoftmaxCrossEntropyWithLogits()
model = Model(resnet, loss, opt)
model.train(epoch, dataset)

 

  • load_checkpoint方法会返回一个参数字典。

  • load_param_into_net会把参数字典中相应的参数加载到网络或优化器中。

 

上一篇:HDU 2853 (KM最大匹配)


下一篇:Centos7 将应用添加快捷方式到applications 中以pycham为例