我在CUDA中实现了一个2D中值滤波器,整个程序如下所示.
#include "cuda_runtime.h"
#include "cuda_runtime_api.h"
#include "device_launch_parameters.h"
#include <iostream>
#include <fstream>
#include <iomanip>
#include <windows.h>
#include <io.h>
#include <stdio.h>
#include<conio.h>
#include <cstdlib>
#include "cstdlib"
#include <process.h>
#include <stdlib.h>
#include <malloc.h>
#include <ctime>
using namespace std;
#define MEDIAN_DIMENSION 3 // For matrix of 3 x 3. We can Use 5 x 5 , 7 x 7 , 9 x 9......
#define MEDIAN_LENGTH 9 // Shoul be MEDIAN_DIMENSION x MEDIAN_DIMENSION = 3 x 3
#define BLOCK_WIDTH 16 // Should be 8 If matrix is of larger then of 5 x 5 elese error occur as " uses too much shared data " at surround[BLOCK_WIDTH*BLOCK_HEIGHT][MEDIAN_LENGTH]
#define BLOCK_HEIGHT 16// Should be 8 If matrix is of larger then of 5 x 5 elese error occur as " uses too much shared data " at surround[BLOCK_WIDTH*BLOCK_HEIGHT][MEDIAN_LENGTH]
__global__ void MedianFilter_gpu( unsigned short *Device_ImageData,int Image_Width,int Image_Height){
__shared__ unsigned short surround[BLOCK_WIDTH*BLOCK_HEIGHT][MEDIAN_LENGTH];
int iterator;
const int Half_Of_MEDIAN_LENGTH =(MEDIAN_LENGTH/2)+1;
int StartPoint=MEDIAN_DIMENSION/2;
int EndPoint=StartPoint+1;
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
const int tid=threadIdx.y*blockDim.y+threadIdx.x;
if(x>=Image_Width || y>=Image_Height)
return;
//Fill surround with pixel value of Image in Matrix Pettern of MEDIAN_DIMENSION x MEDIAN_DIMENSION
if (x == 0 || x == Image_Width - StartPoint || y == 0
|| y == Image_Height - StartPoint) {
} else {
iterator = 0;
for (int r = x - StartPoint; r < x + (EndPoint); r++) {
for (int c = y - StartPoint; c < y + (EndPoint); c++) {
surround[tid][iterator] =*(Device_ImageData+(c*Image_Width)+r);
iterator++;
}
}
//Sort the Surround Array to Find Median. Use Bubble Short if Matrix oF 3 x 3 Matrix
//You can use Insertion commented below to Short Bigger Dimension Matrix
//// bubble short //
for ( int i=0; i<Half_Of_MEDIAN_LENGTH; ++i)
{
// Find position of minimum element
int min=i;
for ( int l=i+1; l<MEDIAN_LENGTH; ++l)
if (surround[tid][l] <surround[tid][min] )
min=l;
// Put found minimum element in its place
unsigned short temp= surround[tid][i];
surround[tid][i]=surround[tid][min];
surround[tid][min]=temp;
}//bubble short end
//////insertion sort start //
/*int t,j,i;
for ( i = 1 ; i< MEDIAN_LENGTH ; i++) {
j = i;
while ( j > 0 && surround[tid][j] < surround[tid][j-1]) {
t= surround[tid][j];
surround[tid][j]= surround[tid][j-1];
surround[tid][j-1] = t;
j--;
}
}*/
////insertion sort end
*(Device_ImageData+(y*Image_Width)+x)= surround[tid][Half_Of_MEDIAN_LENGTH-1]; // it will give value of surround[tid][4] as Median Value if use 3 x 3 matrix
__syncthreads();
}
}
int main( int argc, const char** argv )
{
int dataLength;
int p1;
unsigned short* Host_ImageData = NULL;
ifstream is; // Read File
is.open ("D:\\Image_To_Be_Filtered.raw", ios::binary );
// get length of file:
is.seekg (0, ios::end);
dataLength = is.tellg();
is.seekg (0, ios::beg);
Host_ImageData = new unsigned short[dataLength * sizeof(char) / sizeof(unsigned short)];
is.read ((char*)Host_ImageData,dataLength);
is.close();
int Image_Width = 1580;
int Image_Height = 1050;
unsigned short *Host_ResultData = (unsigned short *)malloc(dataLength);
unsigned short *Device_ImageData = NULL;
/////////////////////////////
// As First time cudaMalloc take more time for memory alocation, i dont want to cosider this time in my process.
//So Please Ignore Code For Displaying First CudaMelloc Time
clock_t begin = clock();
unsigned short *forFirstCudaMalloc = NULL;
cudaMalloc( (void**)&forFirstCudaMalloc, dataLength * sizeof(unsigned short) );
clock_t end = clock();
double elapsed_secs = double(end - begin) / CLOCKS_PER_SEC;
cout<<"First CudaMelloc time = "<<elapsed_secs<<" Second\n" ;
cudaFree( forFirstCudaMalloc );
////////////////////////////
//Actual Process Starts From Here
clock_t beginOverAll = clock(); //
cudaMalloc( (void**)&Device_ImageData, dataLength * sizeof(unsigned short) );
cudaMemcpy(Device_ImageData, Host_ImageData, dataLength, cudaMemcpyHostToDevice);// copying Host Data To Device Memory For Filtering
int x = static_cast<int>(ceilf(static_cast<float>(1580.0) /BLOCK_WIDTH));
int y = static_cast<int>(ceilf(static_cast<float>(1050.0) /BLOCK_HEIGHT));
const dim3 grid (x, y, 1);
const dim3 block(BLOCK_WIDTH, BLOCK_HEIGHT, 1);
begin = clock();
MedianFilter_gpu<<<grid,block>>>( Device_ImageData, Image_Width, Image_Height);
cudaDeviceSynchronize();
end = clock();
elapsed_secs = double(end - begin) / CLOCKS_PER_SEC;
cout<<"Process time = "<<elapsed_secs<<" Second\n" ;
cudaMemcpy(Host_ResultData, Device_ImageData, dataLength, cudaMemcpyDeviceToHost); // copying Back Device Data To Host Memory To write In file After Filter Done
clock_t endOverall = clock();
elapsed_secs = double(endOverall - beginOverAll) / CLOCKS_PER_SEC;
cout<<"Complete Time = "<<elapsed_secs<<" Second\n" ;
ofstream of2; //Write Filtered Image Into File
of2.open("D:\\Filtered_Image.raw", ios::binary);
of2.write((char*)Host_ResultData,dataLength);
of2.close();
cout<<"\nEnd of Writing File. Press Any Key To Exit..!!";
cudaFree(Device_ImageData);
delete Host_ImageData;
delete Host_ResultData;
getch();
return 0;
}
Here是我使用的文件的链接.我使用ImajeJ以“原始”格式存储图像,并使用相同的方式读取“原始”图像.我的图像像素是16位,无符号短.图像的宽度为1580,高度为1050.
我坚信通过使用适当的CUDA优化可以使过滤器更加高效和快速.
实际上,我正在运行GeForce GT 520M卡,时间如下
1)MEDIAN_DIMENSION为3 x 3 = 0.027秒
2)MEDIAN_DIMENSION为5 x 5 = 0.206秒
3)MEDIAN_DIMENSION为7 x 7 = 1.11秒
4)MEDIAN_DIMENSION为9 x 9 = 4.931秒
正如你所看到的,随着我们增加MEDIAN_DIMENSION,时间增加很多,我有应用程序,我通常使用更高的MEDIAN_DIMENSION,如7 x 7和9 x 9.我认为,通过使用Cuda,即使是9 x 9的时间应该不到1秒.
由于我认为排序部分大部分时间都在这里,我们能否更快地进行算法的排序部分?
我们能更有效地使用网格和块吗?我可以使用更大的BLOCK_WIDTH和BLOCK_HEIGHT(如32和32)并且仍然没有达到我设备的最大__shared__内存限制,即4Kb?
可以更有效地使用__shared__内存吗?
任何帮助将不胜感激.
提前致谢.
解决方法:
我正在回答你关于使用共享内存的最后一个问题.
正如Eric已经注意到的那样,使用共享内存并不能真正实现线程协作.
我正在比较你的解决方案,对于3×3的情况,你的内核的变种根本不使用共享内存以及2D median filtering in CUDA: how to efficiently copy global memory to shared memory中讨论的Accelereyes解决方案.
这是完整的代码:
#include <iostream>
#include <fstream>
using namespace std;
#define BLOCK_WIDTH 16
#define BLOCK_HEIGHT 16
/*******************/
/* iDivUp FUNCTION */
/*******************/
int iDivUp(int a, int b){ return ((a % b) != 0) ? (a / b + 1) : (a / b); }
/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
/**********************************************/
/* KERNEL WITH OPTIMIZED USE OF SHARED MEMORY */
/**********************************************/
__global__ void Optimized_Kernel_Function_shared(unsigned short *Input_Image, unsigned short *Output_Image, int Image_Width, int Image_Height)
{
const int tx_l = threadIdx.x; // --- Local thread x index
const int ty_l = threadIdx.y; // --- Local thread y index
const int tx_g = blockIdx.x * blockDim.x + tx_l; // --- Global thread x index
const int ty_g = blockIdx.y * blockDim.y + ty_l; // --- Global thread y index
__shared__ unsigned short smem[BLOCK_WIDTH+2][BLOCK_HEIGHT+2];
// --- Fill the shared memory border with zeros
if (tx_l == 0) smem[tx_l] [ty_l+1] = 0; // --- left border
else if (tx_l == BLOCK_WIDTH-1) smem[tx_l+2][ty_l+1] = 0; // --- right border
if (ty_l == 0) { smem[tx_l+1][ty_l] = 0; // --- upper border
if (tx_l == 0) smem[tx_l] [ty_l] = 0; // --- top-left corner
else if (tx_l == BLOCK_WIDTH-1) smem[tx_l+2][ty_l] = 0; // --- top-right corner
} else if (ty_l == BLOCK_HEIGHT-1) {smem[tx_l+1][ty_l+2] = 0; // --- bottom border
if (tx_l == 0) smem[tx_l] [ty_l+2] = 0; // --- bottom-left corder
else if (tx_l == BLOCK_WIDTH-1) smem[tx_l+2][ty_l+2] = 0; // --- bottom-right corner
}
// --- Fill shared memory
smem[tx_l+1][ty_l+1] = Input_Image[ty_g*Image_Width + tx_g]; // --- center
if ((tx_l == 0)&&((tx_g > 0))) smem[tx_l] [ty_l+1] = Input_Image[ty_g*Image_Width + tx_g-1]; // --- left border
else if ((tx_l == BLOCK_WIDTH-1)&&(tx_g < Image_Width - 1)) smem[tx_l+2][ty_l+1] = Input_Image[ty_g*Image_Width + tx_g+1]; // --- right border
if ((ty_l == 0)&&(ty_g > 0)) { smem[tx_l+1][ty_l] = Input_Image[(ty_g-1)*Image_Width + tx_g]; // --- upper border
if ((tx_l == 0)&&((tx_g > 0))) smem[tx_l] [ty_l] = Input_Image[(ty_g-1)*Image_Width + tx_g-1]; // --- top-left corner
else if ((tx_l == BLOCK_WIDTH-1)&&(tx_g < Image_Width - 1)) smem[tx_l+2][ty_l] = Input_Image[(ty_g-1)*Image_Width + tx_g+1]; // --- top-right corner
} else if ((ty_l == BLOCK_HEIGHT-1)&&(ty_g < Image_Height - 1)) { smem[tx_l+1][ty_l+2] = Input_Image[(ty_g+1)*Image_Width + tx_g]; // --- bottom border
if ((tx_l == 0)&&((tx_g > 0))) smem[tx_l] [ty_l+2] = Input_Image[(ty_g-1)*Image_Width + tx_g-1]; // --- bottom-left corder
else if ((tx_l == BLOCK_WIDTH-1)&&(tx_g < Image_Width - 1)) smem[tx_l+2][ty_l+2] = Input_Image[(ty_g+1)*Image_Width + tx_g+1]; // --- bottom-right corner
}
__syncthreads();
// --- Pull the 3x3 window in a local array
unsigned short v[9] = { smem[tx_l][ty_l], smem[tx_l+1][ty_l], smem[tx_l+2][ty_l],
smem[tx_l][ty_l+1], smem[tx_l+1][ty_l+1], smem[tx_l+2][ty_l+1],
smem[tx_l][ty_l+2], smem[tx_l+1][ty_l+2], smem[tx_l+2][ty_l+2] };
// --- Bubble-sort
for (int i = 0; i < 5; i++) {
for (int j = i + 1; j < 9; j++) {
if (v[i] > v[j]) { // swap?
unsigned short tmp = v[i];
v[i] = v[j];
v[j] = tmp;
}
}
}
// --- Pick the middle one
Output_Image[ty_g*Image_Width + tx_g] = v[4];
}
/****************************/
/* ORIGINAL KERNEL FUNCTION */
/****************************/
__global__ void Original_Kernel_Function(unsigned short *Input_Image, unsigned short *Output_Image, int Image_Width, int Image_Height) {
__shared__ unsigned short surround[BLOCK_WIDTH*BLOCK_HEIGHT][9];
int iterator;
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
if( (x >= (Image_Width - 1)) || (y >= Image_Height - 1) || (x == 0) || (y == 0)) return;
// --- Fill shared memory
iterator = 0;
for (int r = x - 1; r <= x + 1; r++) {
for (int c = y - 1; c <= y + 1; c++) {
surround[tid][iterator] = Input_Image[c*Image_Width+r];
iterator++;
}
}
// --- Sort shared memory to find the median using Bubble Short
for (int i=0; i<5; ++i) {
// --- Find the position of the minimum element
int minval=i;
for (int l=i+1; l<9; ++l) if (surround[tid][l] < surround[tid][minval]) minval=l;
// --- Put found minimum element in its place
unsigned short temp = surround[tid][i];
surround[tid][i]=surround[tid][minval];
surround[tid][minval]=temp;
}
// --- Pick the middle one
Output_Image[(y*Image_Width)+x]=surround[tid][4];
__syncthreads();
}
/***********************************************/
/* ORIGINAL KERNEL FUNCTION - NO SHARED MEMORY */
/***********************************************/
__global__ void Original_Kernel_Function_no_shared(unsigned short *Input_Image, unsigned short *Output_Image, int Image_Width, int Image_Height) {
unsigned short surround[9];
int iterator;
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
if( (x >= (Image_Width - 1)) || (y >= Image_Height - 1) || (x == 0) || (y == 0)) return;
// --- Fill array private to the threads
iterator = 0;
for (int r = x - 1; r <= x + 1; r++) {
for (int c = y - 1; c <= y + 1; c++) {
surround[iterator] = Input_Image[c*Image_Width+r];
iterator++;
}
}
// --- Sort private array to find the median using Bubble Short
for (int i=0; i<5; ++i) {
// --- Find the position of the minimum element
int minval=i;
for (int l=i+1; l<9; ++l) if (surround[l] < surround[minval]) minval=l;
// --- Put found minimum element in its place
unsigned short temp = surround[i];
surround[i]=surround[minval];
surround[minval]=temp;
}
// --- Pick the middle one
Output_Image[(y*Image_Width)+x]=surround[4];
}
/********/
/* MAIN */
/********/
int main()
{
const int Image_Width = 1580;
const int Image_Height = 1050;
// --- Open data file
ifstream is; is.open("C:\\Users\\user\\Documents\\Project\\Median_Filter\\Release\\Image_To_Be_Filtered.raw", ios::binary );
// --- Get file length
is.seekg(0, ios::end);
int dataLength = is.tellg();
is.seekg(0, ios::beg);
// --- Read data from file and close file
unsigned short* Input_Image_Host = new unsigned short[dataLength * sizeof(char) / sizeof(unsigned short)];
is.read((char*)Input_Image_Host,dataLength);
is.close();
// --- CUDA warm up
unsigned short *forFirstCudaMalloc; gpuErrchk(cudaMalloc((void**)&forFirstCudaMalloc, dataLength * sizeof(unsigned short)));
gpuErrchk(cudaFree(forFirstCudaMalloc));
// --- Allocate host and device memory spaces
unsigned short *Output_Image_Host = (unsigned short *)malloc(dataLength);
unsigned short *Input_Image; gpuErrchk(cudaMalloc( (void**)&Input_Image, dataLength * sizeof(unsigned short)));
unsigned short *Output_Image; gpuErrchk(cudaMalloc((void**)&Output_Image, dataLength * sizeof(unsigned short)));
// --- Copy data from host to device
gpuErrchk(cudaMemcpy(Input_Image, Input_Image_Host, dataLength, cudaMemcpyHostToDevice));// copying Host Data To Device Memory For Filtering
// --- Grid and block sizes
const dim3 grid (iDivUp(Image_Width, BLOCK_WIDTH), iDivUp(Image_Height, BLOCK_HEIGHT), 1);
const dim3 block(BLOCK_WIDTH, BLOCK_HEIGHT, 1);
/****************************/
/* ORIGINAL KERNEL FUNCTION */
/****************************/
float time;
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
cudaFuncSetCacheConfig(Original_Kernel_Function, cudaFuncCachePreferShared);
Original_Kernel_Function<<<grid,block>>>(Input_Image, Output_Image, Image_Width, Image_Height);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
printf("Original kernel function - elapsed time: %3.3f ms \n", time);
/***********************************************/
/* ORIGINAL KERNEL FUNCTION - NO SHARED MEMORY */
/***********************************************/
cudaEventRecord(start, 0);
cudaFuncSetCacheConfig(Original_Kernel_Function_no_shared, cudaFuncCachePreferL1);
Original_Kernel_Function_no_shared<<<grid,block>>>(Input_Image, Output_Image, Image_Width, Image_Height);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
printf("Original kernel function - no shared - elapsed time: %3.3f ms \n", time);
/**********************************************/
/* KERNEL WITH OPTIMIZED USE OF SHARED MEMORY */
/**********************************************/
cudaEventRecord(start, 0);
cudaFuncSetCacheConfig(Optimized_Kernel_Function_shared, cudaFuncCachePreferShared);
Optimized_Kernel_Function_shared<<<grid,block>>>(Input_Image, Output_Image, Image_Width, Image_Height);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&time, start, stop);
printf("Optimized kernel function - shared - elapsed time: %3.3f ms \n", time);
// --- Copy results back to the host
gpuErrchk(cudaMemcpy(Output_Image_Host, Output_Image, dataLength, cudaMemcpyDeviceToHost));
// --- Open results file, write results and close the file
ofstream of2; of2.open("C:\\Users\\angelo\\Documents\\Project\\Median_Filter\\Release\\Filtered_Image.raw", ios::binary);
of2.write((char*)Output_Image_Host, dataLength);
of2.close();
cout << "\n Press Any Key To Exit..!!";
gpuErrchk(cudaFree(Input_Image));
delete Input_Image_Host;
delete Output_Image_Host;
return 0;
}
以下是开普勒K20c的时序结果:
1580 x 1050
Original_Kernel_Function = 1.588ms
Original_Kernel_Function_no_shared = 1.278ms
Optimized_Kernel_Function_shared = 1.455ms
2048 x 2048
Original_Kernel_Function = 3.94ms
Original_Kernel_Function_no_shared = 3.118ms
Optimized_Kernel_Function_shared = 3.709ms
4096 x 4096
Original_Kernel_Function = 16.003ms
Original_Kernel_Function_no_shared = 13.735ms
Optimized_Kernel_Function_shared = 14.526ms
8192 x 8192
Original_Kernel_Function = 62.278ms
Original_Kernel_Function_no_shared = 47.484ms
Optimized_Kernel_Function_shared = 57.474ms
以下是GT540M的计时结果,与您的卡更相似:
1580 x 1050
Original_Kernel_Function = 10.332 ms
Original_Kernel_Function_no_shared = 9.294 ms
Optimized_Kernel_Function_shared = 10.301 ms
2048 x 2048
Original_Kernel_Function = 25.256 ms
Original_Kernel_Function_no_shared = 23.567 ms
Optimized_Kernel_Function_shared = 23.876 ms
4096 x 4096
Original_Kernel_Function = 99.791 ms
Original_Kernel_Function_no_shared = 93.919 ms
Optimized_Kernel_Function_shared = 95.464 ms
8192 x 8192
Original_Kernel_Function = 399.259 ms
Original_Kernel_Function_no_shared = 375.634 ms
Optimized_Kernel_Function_shared = 383.121 ms
可以看出,在所有情况下,不使用共享内存的版本似乎(稍微)方便.