[vijos1725&bzoj2875]随机数生成器<矩阵乘法&快速幂&快速乘>

题目链接:https://vijos.org/p/1725

    http://www.lydsy.com/JudgeOnline/problem.php?id=2875

这题是前几年的noi的题,时间比较久远了所以就不是那么的难了

这是一个非常裸的矩阵乘法,一般矩阵乘法就是矩阵+快速幂

只是这道题在矩阵乘法的时候单纯的乘法会溢出,所以还要用到快速乘法

网上也有说用long double黑科技的,虽然我不是很懂那个东东

构造矩阵

单位矩阵a,c

0,1

答案矩阵   Xi-1

1

我的这个矩阵构造可能和一般的不同,主要是我受斐波拉契的毒害太深了QAQ

这题我一开始只是用的int,只过了一半,longlong后过了17组,最后三组加上快速乘优化才成功通过

然后如果是在vijos提交要注意一点就是在vijos上输出longlong型要用I64d来输出

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<queue>
#define ll long long
using namespace std; ll n,m,a,c,g,x0;
ll ans[][],b[][]; void read(ll & xx){
xx=;ll ff=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')ff=-;ch=getchar();}
while(ch>=''&&ch<=''){xx=xx*+ch-'';ch=getchar();}
xx*=ff;
} ll sum(ll x,ll y){
ll cnt=;
while(y){
if(y&){
cnt=(cnt+x)%m;
}y>>=;x=(x+x)%m;
}return cnt;
} void add(){
ll z[][];memset(z,,sizeof(z));
for(int i=;i<=;i++){
for(int j=;j<=;j++){
for(int k=;k<=;k++){
z[i][j]=(z[i][j]%m+sum(b[k][j],b[i][k])%m)%m;
}
}
}
for(int i=;i<=;i++)
for(int j=;j<=;j++)
b[i][j]=z[i][j]%m;
} void mul(ll y){
while(y){
if(y&){
ll z[][];z[][]=z[][]=;
for(int i=;i<=;i++){
for(int j=;j<=;j++){
for(int k=;k<=;k++){
z[i][j]=(z[i][j]%m+sum(ans[k][j],b[i][k])%m)%m;
}
}
}
ans[][]=z[][]%m;
}
y>>=;
add();
}
} int main(){
read(m),read(a),read(c),read(x0),read(n),read(g);
ans[][]=x0%m;ans[][]=;
b[][]=a%m;b[][]=c%m;b[][]=;
mul(n);
//printf("%lld",ans[1][1]%g);
cout<<ans[][]%g;
}

【总结】

活用快速幂的模板,毕竟这东西真的很神奇

上一篇:Atitit 图像金字塔原理与概率 attilax的理解总结qb23


下一篇:图像金字塔及其在 OpenCV 中的应用范例(上)