Lightsabers (hard)
有\(n\)个有颜色的球,颜色编号为\(1\dots m\)中的一个。现在让你从中拿\(k\)个球,问拿到的球的颜色所构成的可重集合有多少种不同的可能。
注意同种颜色球是等价的,但是两个颜色为\(x\)的球不等价于一个。
\(1\leq n\leq 2\times 10^5,\quad 1\leq m,k\leq n。\)
题解
此题把生成函数乘起来就好了。
但是有个问题,那就是如果对每个多项式都做长度为\(k\)的FFT的话,是会TLE的。
所以需要用到启发式合并,每次选两个长度最小的多项式进行合并。可以用堆来维护,时间复杂度\(O(n \log^2 n)\)。
可以使用STL的make_heap
,push_heap
,pop_heap
系列函数,比priority_queue更快。
#include<bits/stdc++.h>
#define co const
#define il inline
template<class T> T read(){
T x=0,w=1;char c=getchar();
for(;!isdigit(c);c=getchar())if(c=='-') w=-w;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*w;
}
template<class T>il T read(T&x){
return x=read<T>();
}
using namespace std;
co double pi=acos(-1);
struct node {
double x,y;
node(){}
node(double x,double y):x(x),y(y){}
};
il node operator+(co node&a,co node&b){
return (node){a.x+b.x,a.y+b.y};
}
il node operator-(co node&a,co node&b){
return (node){a.x-b.x,a.y-b.y};
}
il node operator*(co node&a,co node&b){
return (node){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};
}
co int N=1<<18,mod=1009;
int n,m,k,num[N];
node w[N],A[N],B[N];
int rev[N];
void trans(node a[],int lim){
for(int i=0;i<lim;++i)
if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int step=1;step<lim;step<<=1){
int quot=lim/(step<<1);
for(int i=0;i<lim;i+=step<<1){
int j=i+step;
for(int k=0;k<step;++k){
node t=w[quot*k]*a[j+k];
a[j+k]=a[i+k]-t,a[i+k]=a[i+k]+t;
}
}
}
}
void mul_to(co vector<int>&a,co vector<int>&b,vector<int>&c){
for(int i=0;i<a.size();++i) A[i]=(node){a[i],0};
for(int i=0;i<b.size();++i) B[i]=(node){b[i],0};
int len=ceil(log2(a.size()+b.size()-1)),lim=1<<len;
for(int i=0;i<lim;++i){
rev[i]=rev[i>>1]>>1|(i&1)<<(len-1);
w[i]=(node){cos(i*2*pi/lim),sin(i*2*pi/lim)};
}
for(int i=a.size();i<lim;++i) A[i]=(node){0,0};
for(int i=b.size();i<lim;++i) B[i]=(node){0,0};
trans(A,lim),trans(B,lim);
for(int i=0;i<lim;++i){
A[i]=A[i]*B[i];
w[i].y=-w[i].y;
}
trans(A,lim);
c.resize(a.size()+b.size()-1);
for(int i=0;i<c.size();++i)
c[i]=(long long)round(A[i].x/lim)%mod;
}
vector<int> col[N<<1];
int tot;
il bool cmp(int a,int b){
return col[a].size()>col[b].size();
}
int heap[N],siz;
int main(){
read(n),read(m),read(k);
for(int i=1;i<=n;++i) ++num[read<int>()];
for(int i=1;i<=m;++i){
if(!num[i]) continue;
++tot,col[tot].resize(num[i]+1);
for(int j=0;j<=num[i];++j) col[tot][j]=1;
heap[++siz]=tot;
}
make_heap(heap+1,heap+siz+1,cmp);
while(siz>=2){
int x=heap[1];
pop_heap(heap+1,heap+siz+1,cmp),--siz;
int y=heap[1];
pop_heap(heap+1,heap+siz+1,cmp),--siz;
mul_to(col[x],col[y],col[++tot]);
heap[++siz]=tot,push_heap(heap+1,heap+siz+1,cmp);
}
printf("%d\n",col[tot][k]);
return 0;
}