轮廓发现

轮廓发现是基于图像边缘提取寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终的轮廓发现结果

cv::findContours()

InputOutputArray binImg//输入图像,非0像素被看成1,0的像素值保持不变8-bit

OutputArrayOfArrays contours//全部发现的非轮廓对象

OutputArray hierachy//图的拓卜结构

int mode//轮廓的返回模式

int method//发现方法

Point offset=Point()//轮廓位移,默认是0

 

cv::drawContours()

InputOutputArray image表示目标图像,

InputArrayOfArrays contour表示输入的轮廓组,每一组轮廓由点vector构成,

int contourIdx指明画第几个轮廓,如果该参数为负值,则画全部轮廓,

const Scalar& color为轮廓的颜色,

int thickness为轮廓的线宽,如果为负值或CV_FILLED表示填充轮廓内部,

int lineType为线型,

InputArray hierarchy为轮廓结构信息,

int maxLevel为maxLevel

Point offset=Point()//轮廓位移,默认是0

 

流程:

彩图转灰度图

灰度图转二值图像

发现轮廓

绘制轮廓

#include"pch.h"
#include<iostream>
#include<math.h>
#include<opencv2/opencv.hpp>

using namespace std;
using namespace cv;

Mat gray_pic;
int threshold_value = 100;
int threshold_max = 255;
void DemoContours(int, void*);
int main(int argc, char**argv)
{
    Mat src, dst;
    src = imread("2.jpg");
    namedWindow("output window", CV_WINDOW_AUTOSIZE);
    imshow("output window", src);
    cvtColor(src, gray_pic, COLOR_BGR2GRAY);
    createTrackbar("Threshold value", "output window", &threshold_value, threshold_max, DemoContours);
    DemoContours(0, 0);
    waitKey(0);
    return 0;
}

void DemoContours(int, void*)
{
    Mat canny_output;
    vector<vector<Point>> points;
    vector<Vec4i>hierachy;
    Canny(gray_pic, canny_output, threshold_value, threshold_value * 2, 3, false);
    findContours(canny_output, points, hierachy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));
    Mat dst = Mat::zeros(gray_pic.size(), CV_8UC3);
    RNG rng(12345);
    for (size_t i = 0; i < points.size(); ++i)
    {
        Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
        drawContours(dst, points, i, color, 2, 8, hierachy, 0, Point(0, 0));
    }
    imshow("rslt", dst);
}

轮廓发现

 

上一篇:OpenCV实现验证otsu算法


下一篇:网格缺陷检测(二值化阈值分析)