Reduce:规约;Collector:收集、判断性终止函数、组函数、分组、分区

Stream 的终止操作

 一、规约

 * reduce(T iden, BinaryOperator b)     可以将流中元素反复结合起来,得到一个值。 返回 T
* reduce(BinaryOperator b) 可以将流中元素反复结合起来,得到一个值。 返回 Optional<T>
public static void test02() {
//01.数值求和
List<Integer> list = Arrays.asList(1,2,3,4,5,6,7,8,9,10);
/**
*0 是起始x,0 + y[0] 结果赋值给x, 再➕y[1] 结果再赋值给x 再➕y[2] 。。。。。。
* 因为有起始数值,所以不可能为空,所以返回值为 泛型的类型
*/ Integer reduce = list.stream().reduce(0, (x, y) -> x + y);
System.out.println(reduce); System.out.println("--------------------"); //02.求JavaBean的工资属性求和
//没有起始值,可能为空,所以返回值类型设为了Optional,为了避免空指针异常,有可能为空的情况就用这个
Optional<Double> reduce2 = emps.stream()
.map(Employee::getSalary)
.reduce(Double::sum);
System.out.println(reduce2.get()); }

二、收集

方法

描述

collect(Collector c)

将流转换为其他形式。接收一个 Collector接口的 实现,用于给Stream中元素做汇总的方法

Collector 接口中方法的实现决定了如何对流执行收集操作(如收 集到 List、Set、Map)。但是 Collectors 实用类提供了很多静态 方法,可以方便地创建常见收集器实例,具体方法与实例如下表:

/**
* 收集
*/
public static void collect() {
List<String> list = emps.stream()
.map(Employee::getName)
.collect(Collectors.toList());//Collectors.toSet();
list.forEach(System.out::println); System.out.println("----------------------"); TreeSet<String> treeSet = emps.stream()
.map(Employee::getName)
.collect(Collectors.toCollection(TreeSet::new)); //定制化容器类 treeSet.forEach(System.out::println);
}

 三、判断性终止函数

public static void test01() {
boolean allMatch = emps.stream().allMatch(x -> x.getStatus().equals(Status.BUSY));
boolean anyMatch = emps.stream().anyMatch(x -> x.getStatus().equals(Status.BUSY));
boolean noneMatch = emps.stream().noneMatch(x -> x.getStatus().equals(Status.BUSY));
//Optional是一个新的集合类,为了防止空指针异常
Optional<Employee> first = emps.stream().sorted((x1,x2) -> Double.compare(x1.getSalary(),x2.getSalary())).findFirst();
Employee employee = first.get(); //并行执行 sorted和findAny
Optional<Employee> anyEmployeeOptional = emps.parallelStream().sorted((x1,x2) -> Double.compare(x1.getSalary(),x2.getSalary())).findAny();
Employee anyEmployee = first.get(); long count = emps.stream().count(); Optional<Employee> max = emps.stream().max((x, y) -> Double.compare(x.getSalary(), y.getSalary()));
Employee maxSalaryEmployee = max.get(); Optional<Double> minSalary = emps.stream().map(Employee::getSalary)
.min(Double::compare);
Double maxSalary = minSalary.get(); System.out.println(allMatch);
System.out.println(anyMatch);
System.out.println(noneMatch);
System.out.println(anyEmployee);
System.out.println(first);
System.out.println(count);
System.out.println(maxSalaryEmployee);
System.out.println(minSalary);
}
 
 四、组函数
  /**
* 组函数
*/
public static void groupFunction() { //总数
long count0 = emps.stream().count();
Long count1 = emps.stream().collect(Collectors.counting()); System.out.println("总数1:" + count0);
System.out.println("总数2:" + count1); //平均值
Double avg = emps.stream().collect(Collectors.averagingDouble(Employee::getSalary));
System.out.println("平均值:" + avg); //总和
Double collectSum = emps.stream().collect(Collectors.summingDouble(Employee::getSalary));
double reduceSum = emps.stream().mapToDouble(Employee::getSalary).reduce(0, (x, y) -> x + y);
System.out.println("总和1:" + collectSum);
System.out.println("总和2:" + reduceSum); //最大值
Optional<Double> collectMax = emps.stream().map(Employee::getSalary).collect(Collectors.maxBy((x1, x2) -> x1.compareTo(x2)));
Optional<Double> max = emps.stream().map(Employee::getSalary).max((x1, x2) -> x1.compareTo(x2)); System.out.println("最大值1:" + collectMax.get());
System.out.println("最大值2:" + max.get()); //最小值
Optional<Double> collectMin = emps.stream().map(Employee::getSalary).collect(Collectors.minBy((x1, x2) -> x1.compareTo(x2)));
Optional<Double> min = emps.stream().map(Employee::getSalary).min((x1, x2) -> x1.compareTo(x2)); System.out.println("最小值1:" + collectMin.get());
System.out.println("最小值2:" + min.get());
}
 五、分组
    /**
* 分组
*/
public static void group() {
System.out.println("按照单个字段分组-----------------");
Map<Status, List<Employee>> collectGroupMap = emps.stream().collect(Collectors.groupingBy(Employee::getStatus));
collectGroupMap.forEach((key,value) -> System.out.println(key + " | " + value)); System.out.println("\n先按单个字段分组,每个分组里面再按自定义规则分组-----------------"); Map<Status, Map<String, List<Employee>>> innerGroupMapByIdentify = emps.stream().collect(Collectors.groupingBy(Employee::getStatus, Collectors.groupingBy(x -> {
if (((Employee) x).getAge() < 35) {
return "青年";
} else if (((Employee) x).getAge() < 55) {
return "中年";
} else {
return "老年";
}
})));
innerGroupMapByIdentify.forEach((key,value) -> System.out.println(key + " | " + value)); System.out.println("\n先按单个字段分组,每个分组里面再按另外一字段分组-----------------");
Map<Status, Map<String, List<Employee>>> innerGroupMapByColum = emps.stream()
.collect(Collectors.groupingBy(Employee::getStatus,
Collectors.groupingBy(Employee::getName)
)
); innerGroupMapByColum.forEach((key,value) -> System.out.println(key + " | " + value)); System.out.println("\n先按2个字段一起分组-----------------");
Map<String, List<Employee>> columsMap = emps.stream()
.collect(Collectors.groupingBy(x -> ((Employee) x).getName() + " : " + ((Employee) x).getStatus().toString()));
columsMap.forEach((key,value) -> System.out.println(key + " | " + value));
}
六、分区
    /**
* 分区
*/
public static void partition() {
//一层分区
Map<Boolean, List<Employee>> partitionMap = emps.stream().collect(Collectors.partitioningBy(x -> x.getAge() > 35));
//多层级分区,二层按照一层相同的规则分区
Map<Boolean, Map<Boolean, List<Employee>>> collect = emps.stream().collect(Collectors.partitioningBy(x -> x.getAge() > 35, Collectors.partitioningBy(x -> x.getSalary() < 6000.0))); //多层级分区,二层按照一层不同的规则分区
Map<Boolean, Map<String, List<Employee>>> collect1 = emps.stream().collect(Collectors.partitioningBy(x -> x.getAge() > 35, Collectors.groupingBy(Employee::getName))); partitionMap.forEach((key,value) -> System.out.println(key + " | " + value));
collect.forEach((key,value) -> System.out.println(key + " | " + value));
collect1.forEach((key,value) -> System.out.println(key + " | " + value));
}
七、字符串拼接:join 
/**
* 字符串拼接:join
*/
public static void join(){
String joinResult = emps.stream().map(Employee::getName).collect(Collectors.joining(",", " ===start=== ", " ===end=== "));
System.out.println(joinResult);
}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
上一篇:利用 Grunt (几乎)无痛地做前端开发 (一)之单元测试


下一篇:谁天生就是干程序员的料?