Java逆矩阵计算

我正在尝试用Java计算逆矩阵.

我正在遵循伴随方法(首先计算伴随矩阵,然后转置这个矩阵,最后,将它乘以行列式值的倒数).

当矩阵不太大时,它可以工作.我已经检查过,对于尺寸为12×12的矩阵,可以快速得到结果.但是,当矩阵大于12×12时,完成计算所需的时间呈指数增长.

我需要反转的矩阵是19×19,需要花费太多时间.更多时间消耗的方法是用于计算行列式的方法.

我正在使用的代码是:

public static double determinant(double[][] input) {
  int rows = nRows(input);        //number of rows in the matrix
  int columns = nColumns(input); //number of columns in the matrix
  double determinant = 0;

  if ((rows== 1) && (columns == 1)) return input[0][0];

  int sign = 1;     
  for (int column = 0; column < columns; column++) {
    double[][] submatrix = getSubmatrix(input, rows, columns,column);
    determinant = determinant + sign*input[0][column]*determinant(submatrix);
    sign*=-1;
  }
  return determinant;
}   

有人知道如何更有效地计算大矩阵的行列式吗?如果没有,有没有人知道如何使用其他算法计算大矩阵的逆?

谢谢

解决方法:

成倍?不,我相信矩阵求逆是O(N ^ 3).

我建议使用LU decomposition来求解矩阵方程.使用它时,您无需为行列式求解.

更好的是,查看一个包来帮助你.想到了JAMA.

12×12或19×19不是大型matricies.解决具有数十或数十万*度的问题是很常见的.

这是一个如何使用JAMA的工作示例.编译和运行时,必须在CLASSPATH中使用JAMA JAR:

package linearalgebra;

import Jama.LUDecomposition;
import Jama.Matrix;

public class JamaDemo
{
    public static void main(String[] args)
    {
        double [][] values = {{1, 1, 2}, {2, 4, -3}, {3, 6, -5}};  // each array is a row in the matrix
        double [] rhs = { 9, 1, 0 }; // rhs vector
        double [] answer = { 1, 2, 3 }; // this is the answer that you should get.

        Matrix a = new Matrix(values);
        a.print(10, 2);
        LUDecomposition luDecomposition = new LUDecomposition(a);
        luDecomposition.getL().print(10, 2); // lower matrix
        luDecomposition.getU().print(10, 2); // upper matrix

        Matrix b = new Matrix(rhs, rhs.length);
        Matrix x = luDecomposition.solve(b); // solve Ax = b for the unknown vector x
        x.print(10, 2); // print the solution
        Matrix residual = a.times(x).minus(b); // calculate the residual error
        double rnorm = residual.normInf(); // get the max error (yes, it's very small)
        System.out.println("residual: " + rnorm);
    }
}

根据quant_dev的建议,使用Apache Commons Math解决了同样的问题:

package linearalgebra;

import org.apache.commons.math.linear.Array2DRowRealMatrix;
import org.apache.commons.math.linear.ArrayRealVector;
import org.apache.commons.math.linear.DecompositionSolver;
import org.apache.commons.math.linear.LUDecompositionImpl;
import org.apache.commons.math.linear.RealMatrix;
import org.apache.commons.math.linear.RealVector;

public class LinearAlgebraDemo
{
    public static void main(String[] args)
    {
        double [][] values = {{1, 1, 2}, {2, 4, -3}, {3, 6, -5}};
        double [] rhs = { 9, 1, 0 };

        RealMatrix a = new Array2DRowRealMatrix(values);
        System.out.println("a matrix: " + a);
        DecompositionSolver solver = new LUDecompositionImpl(a).getSolver();

        RealVector b = new ArrayRealVector(rhs);
        RealVector x = solver.solve(b);
        System.out.println("solution x: " + x);;
        RealVector residual = a.operate(x).subtract(b);
        double rnorm = residual.getLInfNorm();
        System.out.println("residual: " + rnorm);
    }
}

根据您的情况调整这些.

上一篇:【如何快速的开发一个简单的iOS直播app】(代码篇)


下一篇:将Teradata用于Java Web应用程序的OLTP操作