pandas.core.base.DataError: No numeric types to aggregate错误规避
我没有去解决这个问题, 而用填充0规避了这个问题
统计 聚合
d = [
{'cur': 1, 'next': 2, 'avgtime': None, 'callcount': None},
{'cur': 2, 'next': 3, 'avgtime': None, 'callcount': None},
{'cur': 2, 'next': 4, 'avgtime': None, 'callcount': None},
{'cur': 1, 'next': 2, 'avgtime': None, 'callcount': None},
{'cur': 2, 'next': 3, 'avgtime': None, 'callcount': None},
{'cur': 2, 'next': 4, 'avgtime': None, 'callcount': None},
{'cur': None, 'next': 4, 'avgtime': None, 'callcount': None},
]
df = pd.DataFrame(d, dtype='int')
df.groupby(["cur", "next"], as_index=False).mean()
重要总结:
1. None为NaN
2. count会统计空字符串, 但是cont不统计NaN. sum不统计NaN, 否则就会像sql里select(1+NULL)结果是NULL
3. 分组key为None时,记录不显示
计算mean()时DataError: No numeric types to aggregate
agg函数
使用这种聚合会卡到这个bug
pandas.core.base.DataError: No numeric types to aggregate错误规避
import pandas as pd
d = [
{'cur': 1, 'next': 2, 'avgtime': None, 'callcount': None},
{'cur': 2, 'next': 3, 'avgtime': None, 'callcount': None},
{'cur': 2, 'next': 4, 'avgtime': None, 'callcount': None},
{'cur': 1, 'next': 2, 'avgtime': None, 'callcount': None},
{'cur': 2, 'next': 3, 'avgtime': None, 'callcount': None},
{'cur': 2, 'next': 4, 'avgtime': None, 'callcount': None},
{'cur': None, 'next': 4, 'avgtime': None, 'callcount': None},
]
df = pd.DataFrame(d, dtype='int')
g = df.groupby(["cur", "next"], as_index=False)
res = g.agg(
{
'avgtime': 'sum',
'callcount': 'mean',
}
)
复杂的分组: cur分别与p1 p2 p3分组
import numpy as np
import pandas as pd
d = [
{
'cur': 1,
'p1_next': 1,
'p1_avgtime': 10,
'p1_callaccount': 10,
'p2_next': 2,
'p2_avgtime': None,
'p2_callaccount': 10,
'p3_next': 3,
'p3_avgtime': 10,
'p3_callaccount': None,
}
]
df = pd.DataFrame(d, dtype='int')
df.groupby(["cur", "p2_next"], as_index=False).sum().to_dict(orient='records')