impala操作hase、hive

impala中使用复杂类型(Hive):
    如果Hive中创建的表带有复杂类型(array,struct,map),且储存格式(stored as textfile)为text或者默认,那么在impala中将无法查询到该表
解决办法:
    另建一张字段一致的表,将stored as textfile改为stored as parquet,再将源表数据插入(insert into tablename2 select * from tablename1),这张表即可在impala中查询。

查询方法:
    impala 和hive不同,对array,map,struct等复杂类型不使用explode,而使用如下方法:
select order_id,rooms.room_id, days.day_id,days.price from test2,test2.rooms,test2.rooms.days;
看起来是把一个复杂类型当作子表,进行join的查询
表结构:
test2 (
   order_id string,
   rooms array<struct<
         room_id:string,
         days:array<struct<day_id:string,price:int>>
         >
   >
)

Impala与HBase整合:
Impala与HBase整合,需要将HBase的RowKey和列映射到Impala的Table字段中。Impala使用Hive的Metastore来存储元数据信息,与Hive类似,在于HBase进行整合时,也是通过外部表(EXTERNAL)的方式来实现。

在HBase中创建表:

...
tname = TableName.valueOf("students");
HTableDescriptor tDescriptor = new HTableDescriptor(tname);
HColumnDescriptor famliy = new HColumnDescriptor("core");
tDescriptor.addFamily(famliy);
admin.createTable(tDescriptor);
//添加列:
...
HTable htable = (HTable) connection.getTable(tname);
//不要自动清理缓冲区
htable.setAutoFlush(false);
for (int i = 1; i < 50; i++) {
Put put = new Put(Bytes.toBytes("lisi" + format.format(i)));
//关闭写前日志
put.setWriteToWAL(false); put.addColumn(Bytes.toBytes("core"), Bytes.toBytes("math"), Bytes.toBytes(format.format(i)));
put.addColumn(Bytes.toBytes("core"), Bytes.toBytes("english"), Bytes.toBytes(format.format(Math.random() * i)));
put.addColumn(Bytes.toBytes("core"), Bytes.toBytes("chinese"), Bytes.toBytes(format.format(Math.random() * i)));
htable.put(put);
if (i % 2000 == 0) {
htable.flushCommits();
}
}

部分代码

在Hive中创建外部表:

...
state.execute("create external table if not exists students (" +
"user_name string, " +
"core_math string, " +
"core_english string, " +
"core_chinese string )" +
"row format serde 'org.apache.hadoop.hive.hbase.HBaseSerDe' " +
"stored by 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' " +
"with serdeproperties ('hbase.columns.mapping'=':key,core:math,core:english,core:chinese') " +
"tblproperties('hbase.table.name'='students')");
...

部分代码

上面DDL语句中,在WITH SERDEPROPERTIES选项中指定Hive外部表字段到HBase列的映射,其中“:key”对应于HBase中的RowKey,名称为“lisi****”,其余的就是列簇info中的列名。最后在TBLPROPERTIES中指定了HBase中要进行映射的表名。

在Impala中同步元数据:
Impala共享Hive的Metastore,这时需要同步元数据,可以通过在Impala Shell中执行同步命令:
#INVALIDATE METADATA;
然后,就可以查看到映射HBase中表了

注意: impala支持select / insert , 不支持 delete/update单行语句,Impala不支持修改非kudu表,其他操作与Hive类似

Java操作:
maven 依赖:

        <dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>com.cloudera.impala</groupId>
<artifactId>jdbc</artifactId>
<version>2.5.31</version>
</dependency>

maven

Java code:

import org.junit.After;
import org.junit.Before;
import org.junit.Test; import java.sql.*; /**
* @Author:Xavier
* @Data:2019-02-22 13:34
**/ public class ImpalaOptionTest {
private String driverName="com.cloudera.impala.jdbc41.Driver";
private String url="jdbc:impala://datanode02:21050/xavierdb";
private Connection conn=null;
private Statement state=null;
private ResultSet res=null; @Before
public void init() throws ClassNotFoundException, SQLException {
Class.forName(driverName);
conn= DriverManager.getConnection(url,"impala","impala");
state=conn.createStatement();
} //显示数据库
@Test
public void test() throws SQLException {
// ResultSet res=state.executeQuery("show databases");
// ResultSet res = state.executeQuery("show tables");
res = state.executeQuery("select * from students"); while(res.next()){
System.out.println(String.valueOf(res.getString(1)));
}
} // 释放资源
@After
public void destory() throws SQLException {
if (res != null) state.close();
if (state != null) state.close();
if (conn != null) conn.close();
} }

Java Code

上一篇:Java学习日记基础篇(七) —— 数组、排序


下一篇:Ubuntu的内核转储工具【转】