设f(n)为权值为n的神犇二叉树个数。考虑如何递推求这个东西。
套路地枚举根节点的左右子树。则f(n)=Σf(i)f(n-i-cj),cj即根的权值。卷积的形式,cj也可以通过卷上一个多项式枚举。可以考虑生成函数。
设F(x)为f(n)的生成函数,G(x)为c(n)的生成函数,G(x)中含有xa项表示存在ci=a。于是可得F(x)=F2(x)G(x)+1。+1是因为枚举根的权值时没有考虑空树即根没有权值的情况。
可以解出F(x)={1±√[1-4G(x)]}/2G(x)=2/{1±√[1-4G(x)]}。由F(0)=1,G(0)=0,可得F(x)=2/{1+√[1-4G(x)]}。
于是求出来这个就好了。需要一个多项式开根和多项式求逆,原理类似,有B(x)=(A(x)+B'(x)2)/2B'(x)。多项式开根的常数项原本是需要求二次剩余的,不过显然在这里其常数项为1。
各种数组混用没清零调了好长时间。并且开始写丑到一个境界以至于要开八倍数组。虽然改成了开四倍还是在bzoj上t掉了。辣鸡板子活该t。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 550000
#define P 998244353
#define inv3 332748118
int n,m,a[N],b[N],c[N],d[N],e[N],r[N];
int ksm(int a,int k)
{
if (k==) return ;
int tmp=ksm(a,k>>);
if (k&) return 1ll*tmp*tmp%P*a%P;
else return 1ll*tmp*tmp%P;
}
void DFT(int n,int *a,int p)
{
for (int i=;i<n;i++) r[i]=(r[i>>]>>)|(i&)*(n>>);
for (int i=;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=;i<=n;i<<=)
{
int wn=ksm(p,(P-)/i);
for (int j=;j<n;j+=i)
{
int w=;
for (int k=j;k<j+(i>>);k++,w=1ll*w*wn%P)
{
int x=a[k],y=1ll*w*a[k+(i>>)]%P;
a[k]=(x+y)%P,a[k+(i>>)]=(x-y+P)%P;
}
}
}
}
void mul(int n,int *a,int *b)
{
DFT(n,a,),DFT(n,b,);
for (int i=;i<n;i++) a[i]=1ll*a[i]*b[i]%P;
DFT(n,a,inv3);DFT(n,b,inv3);
int inv=ksm(n,P-);
for (int i=;i<n;i++) a[i]=1ll*a[i]*inv%P,b[i]=1ll*b[i]*inv%P;
}
void inv(int n)
{
int t=;
for (int i=;i<=n;i++) e[i]=a[i],a[i]=d[i]=;
a[]=ksm(e[],P-);
while (t<=n)
{
t<<=;
for (int i=;i<t;i++) d[i]=e[i];
t<<=;
mul(t,d,a);
for (int i=;i<(t>>);i++) d[i]=(P-d[i])%P;
for (int i=(t>>);i<t;i++) d[i]=;
d[]=(d[]+)%P;
mul(t,a,d);
for (int i=(t>>);i<t;i++) a[i]=;
t>>=;
}
for (int i=n+;i<t;i++) a[i]=;
}
void Sqrt(int n)
{
int t=;
memcpy(b,a,sizeof(b));
memset(a,,sizeof(a));a[]=;
while (t<=n)
{
t<<=;
for (int i=;i<t;i++) c[i]=a[i];
t<<=;
mul(t,c,a);
for (int i=;i<(t>>);i++) c[i]=(c[i]+b[i])%P;
for (int i=(t>>);i<t;i++) c[i]=;
for (int i=;i<(t>>);i++) a[i]=(a[i]<<)%P;
inv(t-);
for (int i=(t>>);i<t;i++) a[i]=;
mul(t,a,c);
for (int i=(t>>);i<t;i++) a[i]=;
t>>=;
}
for (int i=n+;i<t;i++) a[i]=;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3625.in","r",stdin);
freopen("bzoj3625.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read(),m=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=n;i++) b[a[i]]=P-;
b[]=;
memcpy(a,b,sizeof(a));
Sqrt(m);
a[]++;if (a[]>=P) a[]-=P;
inv(m);
for (int i=;i<=m;i++) a[i]=(a[i]<<)%P;
for (int i=;i<=m;i++) printf("%d\n",a[i]);
return ;
}