题目大意:求
\[E_{j}=\sum_{i<j} \frac{q_{i}}{(i-j)^{2}}-\sum_{i>j} \frac{q_{i}}{(i-j)^{2}}
\]
\]
题解:可以发现,这个和式隐藏着卷积的形式,即:设 \(f(i)={1\over i^2}\),\(g(i)=q_i\),则以上和式可以表示成 $$\sum\limits_{i=0}^j g(i)f(j-i)$$,$$\sum\limits_{i=j}^{n-1}g(i)f(i-j)$$,令 \(f(0)=0\) 即可让 j 这一项也参与运算。发现上面的和式直接就是一个卷积的计算,对于下面的和式来说,发现 f 和 g 的差是定值,这里采用将 g 翻转成 g‘,则原式变成$$\sum\limits_{i=j}^{n-1}g'(n-i-1)f(i-j)$$可以发现,下标的和成为了定值,在对求和指标进行换元之后,也成为了一个卷积。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxn=4e5+10;
const double pi=acos(-1);
int n,m;
struct cp{
double x,y;
cp(double xx=0,double yy=0):x(xx),y(yy){}
friend cp operator+(const cp &a,const cp &b){return cp(a.x+b.x,a.y+b.y);}
friend cp operator-(const cp &a,const cp &b){return cp(a.x-b.x,a.y-b.y);}
friend cp operator*(const cp &a,const cp &b){return cp(a.x*b.x-a.y*b.y,a.y*b.x+b.y*a.x);}
}a[maxn],b[maxn],c[maxn];
int tot=1,bit,rev[maxn];
void read_and_parse(){
scanf("%d",&n),m=2*n-2;
for(int i=0;i<n;i++)scanf("%lf",&a[i].x),b[n-1-i].x=a[i].x;
for(int i=1;i<n;i++)c[i].x=1.0/i/i;
while(tot<=m)tot<<=1,++bit;
for(int i=0;i<tot;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
}
void fft(cp *t,int type){
for(int i=0;i<tot;i++)if(i<rev[i])swap(t[i],t[rev[i]]);
for(int mid=1;mid<tot;mid<<=1){
cp wn(cos(pi/mid),type*sin(pi/mid));
for(int j=0;j<tot;j+=(mid<<1)){
cp w(1,0);
for(int k=0;k<mid;k++,w=w*wn){
cp x=t[j+k],y=w*t[j+mid+k];
t[j+k]=x+y,t[j+mid+k]=x-y;
}
}
}
if(type==-1)for(int i=0;i<tot;i++)t[i].x/=tot;
}
void solve(){
fft(a,1),fft(b,1),fft(c,1);
for(int i=0;i<tot;i++)a[i]=a[i]*c[i],b[i]=b[i]*c[i];
fft(a,-1),fft(b,-1);
for(int i=0;i<n;i++)printf("%.3lf\n",a[i].x-b[n-1-i].x);
}
int main(){
read_and_parse();
solve();
return 0;
}