bzoj4361isn 容斥+bit优化dp

4361: isn

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 375  Solved: 186
[Submit][Status][Discuss]

Description

给出一个长度为n的序列A(A1,A2...AN)。如果序列A不是非降的,你必须从中删去一个数,
这一操作,直到A非降为止。求有多少种不同的操作方案,答案模10^9+7。
 

Input

第一行一个整数n。
接下来一行n个整数,描述A。

Output

一行一个整数,描述答案。

Sample Input

4
1 7 5 3

Sample Output

18

HINT

1<=N<=2000

先找出长度为i的非降序列方案数,对于每个方案在原序列中删除其它元素可得答案
f[i][j]表示长度为i,以第j个元素结尾构成非降序列方案数
转移n^3 bit优化至n^2*log2(n)
g[i]表示长度为i的非降序列个数,可以对f[][]求和得到

接下来考虑每个方案,在原序列中删除一些数来得到答案

对于长度为i的非降序列,可以在原串中删去剩余的n-i个元素来得到
由于删除是有顺序的,所以删除方案是 (n-i)!
那么对于每个i,它贡献的答案就是g[i]*(n-i)!
但是,由于有些删除方法到长度i+1时就应该停止,所以 -(n-i-1)!*(i+1)*g[i+1] 不管i+1合法或者非法,到i肯定不合法,所以减去
*(i+1)是因为还要选择一个删去才得到长度i的序列
那么ans=sum(g[i]*(n-i)!-(n-i-1)!*(i+1)*g[i+1])

 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ll long long
#define mod 1000000007
#define N 2005
using namespace std;
int a[N],b[N],fac[N],n;ll f[N][N],c[N],g[N];
void plu(ll &x,ll y){
x+=y;x>mod?x-=mod:;
}
void update(int p,int val){
while(p<=n){
plu(c[p],val);
p+=p&-p;
}
}
ll sum(int p){
ll t=;
while(p){
plu(t,c[p]);
p-=p&-p;
}
return t;
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]),b[i]=a[i];
sort(b+,b++n);
int len=unique(b+,b++n)-b-;
for(int i=;i<=n;i++)
a[i]=lower_bound(b+,b++len,a[i])-b;
for(int i=;i<=n;i++)f[][i]=;
for(int i=;i<=n;i++){
memset(c,,sizeof(c));
for(int j=;j<=n;j++){
plu(f[i][j],sum(a[j]));
update(a[j],f[i-][j]);
}
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
plu(g[i],f[i][j]);
ll ans=;
fac[]=;
for(int i=;i<=n;i++)fac[i]=(1ll*fac[i-]*i)%mod;
for(int i=n;i;i--)
ans=(ans+(g[i]*fac[n-i])%mod-((g[i+]*(i+))%mod*fac[n-i-])%mod)%mod;
ans<?ans+=mod:;
cout<<ans;
return ;
}
上一篇:Cocoa框架


下一篇:深入理解多线程(二)—— Java的对象模型