Day18 有参装饰器 迭代器 生成器

一 有参装饰器

了解无参装饰器的实现原理后,我们可以再实现一个用来为被装饰对象添加认证功能的装饰器,实现的基本形式如下

1.

def auth(func,db_type):
    def wrapper(*args, **kwargs):
        name=input('your name>>>: ').strip()
        pwd=input('your password>>>: ').strip()

        if db_type == 'file':
            print('基于文件的验证')
            if name == 'egon' and pwd == '123':
                res = func(*args, **kwargs)
                return res
            else:
                print('user or password error')
        elif db_type == 'mysql':
            print('基于mysql的验证')
        elif db_type == 'ldap':
            print('基于ldap的验证')
        else:
            print('不支持该db_type')
    return wrapper

@auth  # 账号密码的来源是文件
def index(x,y):
    print('index->>%s:%s' %(x,y))

2.

def auth(db_type):
    def deco(func):
        def wrapper(*args, **kwargs):
            name=input('your name>>>: ').strip()
            pwd=input('your password>>>: ').strip()
            if db_type == 'file':
                print('基于文件的验证')
                if name == 'egon' and pwd == '123':
                    res = func(*args, **kwargs)
                    return res
                else:
                    print('user or password error')
            elif db_type == 'mysql':
                print('基于mysql的验证')
            elif db_type == 'ldap':
                print('基于ldap的验证')
            else:
                print('不支持该db_type')
        return wrapper
    return deco

这样我们就得到了一个有参装饰器,有参装饰器的模板如下

def 有参装饰器(x,y,z):
    def outter(func):
        def wrapper(*args, **kwargs):
            res = func(*args, **kwargs)
            return res
        return wrapper
    return outter

@有参装饰器(1,y=2,z=3)
def 被装饰对象():
    pass

二 迭代器

1、什么是迭代器

迭代器指的是迭代取值的工具,迭代是一个重复的过程,每次重复都是基于上一次的结果而继续的,单纯的重复并不是迭代

2、为何要有迭代器

迭代器是用来迭代取值的工具,而涉及到把多个值循环取出来的类型,可以迭代的对象有:列表、字符串、元组、字典、集合、打开文件

l=['egon','liu','alex']
    i=0
    while i < len(l):
        print(l[i])
        i+=1

上述迭代取值的方式只适用于有索引的数据类型:列表、字符串、元组,为了解决基于索引迭代器取值的局限性,python必须提供一种能够不依赖于索引的取值方式,这就是迭代器。

3.使用

3.1可迭代对象:内置有__iter__方法的对象都是可迭代对象

3.2调用可迭代对象下的__iter__方法会将其转换成迭代器对象

while True:
    try:
        print(d_iterator.__next__())
    except StopIteration:
        break

4.可迭代对象与迭代器对象详解

4.1可迭代对象("可以转换成迭代器的对象"):内置有__iter__方法对象,可迭代对象.__iter__(): 得到迭代器对象

4.2 迭代器对象:内置有__next__方法并且内置有__iter__方法的对象

迭代器对象.__next__():得到迭代器的下一个值

迭代器对象.__iter__():得到迭代器的本身,说白了调了跟没调一个样子

dic={'a':1,'b':2,'c':3}
dic_iterator=dic.__iter__()
print(dic_iterator is dic_iterator.__iter__().__iter__().__iter__())

4.3 文件对象

s1=''
s1.__iter__()
l=[]
l.__iter__()
t=(1,)
t.__iter__()
d={'a':1}
d.__iter__()
set1={1,2,3}
set1.__iter__()
with open('a.txt',mode='w') as f:
    f.__iter__()
    f.__next__()

5 for循环的工作原理:for循环可以称之为叫迭代器循环

d={'a':1,'b':2,'c':3}

# 1、d.__iter__()得到一个迭代器对象
# 2、迭代器对象.__next__()拿到一个返回值,然后将该返回值赋值给k
# 3、循环往复步骤2,直到抛出StopIteration异常for循环会捕捉异常然后结束循环
for k in d:
    print(k)


with open('a.txt',mode='rt',encoding='utf-8') as f:
    for line in f: # f.__iter__()
        print(line)


list('hello') #原理同for循环

 

6、迭代器优缺点总结

6.1 优点:

6.1.1、为序列和非序列类型提供了一种统一的迭代取值方式。

6.1.2、惰性计算:迭代器对象表示的是一个数据流,可以只在需要时才去调用next来计算出一个值,就迭代器本身来说,同一时刻在内存中只有一个值,因而可以存放无限大的数据流,而对于其他容器类型,如列表,需要把所有的元素都存放于内存中,受内存大小的限制,可以存放的值的个数是有限的。

6.2 缺点:

6.2.1、除非取尽,否则无法获取迭代器的长度

6.2.2、只能取下一个值,不能回到开始,更像是‘一次性的’,迭代器产生后的唯一目标就是重复执行next方法直到值取尽,否则就会停留在某个位置,等待下一次调用next;若是要再次迭代同个对象,你只能重新调用iter方法去创建一个新的迭代器对象,如果有两个或者多个循环使用同一个迭代器,必然只会有一个循环能取到值。

三 生成器

1.如何得到自定义的迭代器:

在函数内一旦存在yield关键字,调用函数并不会执行函数体代码,会返回一个生成器对象,生成器即自定义的迭代器器

def func():
    print('第一次')
    yield 1
    print('第二次')
    yield 2
    print('第三次')
    yield 3
    print('第四次')

2.使用

def my_range(start,stop,step=1):
    # print('start...')
    while start < stop:
        yield start
        start+=step
    # print('end....')


# g=my_range(1,5,2) # 1 3
# print(next(g))
# print(next(g))
# print(next(g))

for n in my_range(1,7,2):
    print(n)

总结yield:有了yield关键字,我们就有了一种自定义迭代器的实现方式。yield可以用于返回值,但不同于return,函数一旦遇到return就结束了,而yield可以保存函数的运行状态挂起函数,用来返回多次值

上一篇:day18_枚举丶异常


下一篇:Day18_用户授权