安装环境
- OS:Ubuntu 18.04 64 bit
- 显卡:NVidia GTX 1080
任务:安装 CUDA 10及cuDNN 7
工具下载
NVidia官网下载下列文件:
CUDA 10:cuda_10.0.130_410.48_linux.run
cnDNN 7.4:cudnn-10.0-linux-x64-v7.4.2.24.tgz
安装CUDA
$ sudo sh cuda_10.0.130_410.48_linux.run
先输入accept
接受协议,然后按需回答问题即可。
注意:
- 如果当前显卡驱动版本高于CUDA安装包内的驱动,建议跳过这一步,保留原来的显卡驱动即可
- 为了节省空间,sample可以不装
接着将下面内容追加到~/.bashrc
:
export PATH=/usr/local/cuda-10.0/bin:$PATH
验证CUDA
使用nvidia-smi
查看驱动版本为415.23
:
$ nvidia-smi
Thu Jan 24 18:00:52 2019
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 415.23 Driver Version: 415.23 CUDA Version: 10.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 1080 Off | 00000000:01:00.0 On | N/A |
| 48% 35C P8 8W / 180W | 200MiB / 8116MiB | 2% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1462 G /usr/lib/xorg/Xorg 83MiB |
| 0 1600 G /usr/bin/gnome-shell 100MiB |
| 0 1794 G /opt/teamviewer/tv_bin/TeamViewer 14MiB |
+-----------------------------------------------------------------------------+
CUDA版本为10.0
:
$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sat_Aug_25_21:08:01_CDT_2018
Cuda compilation tools, release 10.0, V10.0.130
安装cuDNN
流程是:解压,拷贝,配置环境变量
# 解压
$ tar -zxvf cudnn-10.0-linux-x64-v7.4.2.24.tgz
# 拷贝
$ cd cudnn-10.0-linux-x64-v7.4.2.24
$ sudo cp cuda/include/cudnn.h /usr/local/cuda-10.0/include
$ sudo cp cuda/lib64/libcudnn* /usr/local/cuda-10.0/lib64
# 修改权限
$ sudo chmod a+r /usr/local/cuda-10.0/include/cudnn.h /usr/local/cuda-10.0/lib64/libcudnn*
将下面内容追加到~/.bashrc
:
export PATH=/usr/local/cuda-10.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH
export CUDNN_PATH="/usr/local/cuda-10.0/lib64/libcudnn.so"
验证cnDNN
下面命令不报错就OK。
$ echo -e '#include"cudnn.h"\n void main(){}' | nvcc -x c - -o /dev/null -lcudnn