MapReduce(五)

MapReduce的(五)

1.MapReduce的多表关联查询。

根据文本数据格式。查询多个文本中的内容关联。查询。

2.MapReduce的多任务窜执行的使用

多任务的串联执行问题,主要是要建立controlledjob,然后建组管理起来。留意多线程因效率而导致执行结束时间不一致的问题。

-------------------------------------------------- -------------------------------------------------- ----------------------------

MapReduce的的的多表关联查询

数据:

ctoryname地址
北京红星1
深圳迅雷3
广州本田2
北京瑞星1
广州发展银行2
腾讯3
北京银行5
addressID地址名称
1北京
2广州
3深圳
4西安

代码:

包com.huhu.day05; 

import java.io.IOException; 

导入org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; import com.huhu.day04.ProgenyCount; / **
* *厂名厂址为北京红星1
*
*地址addressID地址名称1北京
*
*从工厂选择factory.factoryname,address.addressname,地址在哪里
* factory.addressed = address.addressID
*
*流程1.读取这2个文件?1个mapreduce 2.mapper 2个:map--同时可以处理2个文件代码3.map输出kv k:id
* v:t1:北京红星1 k:id v:t2:1北京4.降低价值{t1:北京红
*星1,t2:1北京}
*
* @作者huhu_k
*
* /
公共类扩展ToolRunner implements Tool { 私人配置conf; 公共静态类MyMapper扩展Mapper <LongWritable,文本,文本,文本> { @覆盖
protected void map(LongWritable key,Text value,Context context)throws IOException,InterruptedException {
String [] line = value.toString()。split(“\ t”);
如果(line [0] .matches(“\\ d”)){
// k:1 v:t1:1:北京
context.write(new Text(line [0]),new Text(“t1”+ line [0] +“:”+ line [1]));
} else {
// k:1 v:t2:beijingredstar:1
context.write(new Text(line [1]),new Text(“t2”+ line [0] +“:”+ line [1])) ;
}
}
} 公共静态类MyReduce扩展减速器{ @覆盖
保护无效设置(上下文上下文)抛出IOException,InterruptedException {
context.write(new Text(“factoryname \ t \ t”),新文本(“地址名称”));
} @覆盖
protected void reduce(Text key,Iterable <Text> values,Context context)
抛出IOException,InterruptedException {
String fsc =“”;
String addr =“”;
for(Text s:values){
String line = s.toString();
if(line.contains(“t1”)){
addr = line.split(“:”)[1];
} else if(line.contains(“t2”)){
fsc = line.split(“:”)[0];
}
} if(!fsc.equals(“”)&&!addr.equals(“”)){
context.write(new Text(fsc),new Text(addr));
}
} @覆盖
保护无效清理(上下文上下文)抛出IOException,InterruptedException {
}
} 公共静态无效的主要(字符串[]参数)抛出异常{
多重连接t = new MutipleJoin();
配置conf = t.getConf ();
String [] other = new GenericOptionsParser(conf,args).getRemainingArgs();
if(other.length!= 2){
System.err.println(“number is fail”);
}
int run = ToolRunner.run(conf,t,args);
System.exit(运行);
} @覆盖
public Configuration getConf(){
if(conf!= null){
返回conf;
}
返回新的配置();
} @覆盖
public void setConf(Configuration arg0){ } @覆盖
公共诠释运行(字符串[]其他)抛出异常{
配置con = getConf();
Job job = Job.getInstance(con);
job.setJarByClass(ProgenyCount.class);
job.setMapperClass(MyMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class); //默认分区
// job.setPartitionerClass(HashPartitioner.class); job.setReducerClass(MyReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job,new Path(“hdfs:// ry-hadoop1:8020 / in / day05”));
Path path = new Path(“hdfs:// ry-hadoop1:8020 / out / day05.txt”);
FileSystem fs = FileSystem.get(getConf());
if(fs.exists(path)){
fs.delete(path,true);
}
FileOutputFormat.setOutputPath(job,path); 返回job.waitForCompletion(true)?0:1;
} }

运行结果:

MapReduce(五)

将有规律的数据进行关联查询。

二。MapReduce的的多任务窜改的使用

WordCount_Mapper
包com.huhu.day05; 

import java.io.IOException; 

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
导入org.apache.hadoop.mapreduce.Mapper; 公共类WordCount_Mapper扩展映射器<LongWritable,Text,Text,IntWritable> { private final IntWritable one = new IntWritable(1); @覆盖
保护无效映射(LongWritable键,文本值,映射器<LongWritable,文本,文本,IntWritable> .Context上下文)
抛出IOException,InterruptedException {
String [] line = value.toString()。split(“”);
for(String s:line){
context.write(new Text(s),one);
}
}
}

WordCount_Reduce

包com.huhu.day05; 

import java.io.IOException; 

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; 公共类WordCount_Reducer扩展Reducer <Text,IntWritable,Text,IntWritable> { @覆盖
protected void reduce(Text key,Iterable <IntWritable> values,Context context)
抛出IOException,InterruptedException { int sum = 0; for(IntWritable i:values){
sum + = i.get();
}
context.write(key,new IntWritable(sum));
}
}

Top10_Mapper

包com.huhu.day05; 

import java.io.IOException; 

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
导入org.apache.hadoop.mapreduce.Mapper; 公共类Top10_Mapper扩展了Mapper <LongWritable,Text,Text,IntWritable> { @覆盖
protected void map(LongWritable key,Text value,Context context)throws IOException,InterruptedException {
String [] line = value.toString()。split(“\ t”);
context.write(new Text(line [0]),new IntWritable(Integer.parseInt(line [1])));
}
}

Top10_Reducer

包com.huhu.day05; 

import java.io.IOException;
import java.util.TreeSet; import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; import com.huhu.day05.pojo.WordCount; 公共类Top10_Reducer扩展Reducer <Text,IntWritable,WordCount,NullWritable> { private TreeSet <WordCount> set = new TreeSet <>(); @覆盖
protected void reduce(Text key,Iterable <IntWritable> values,Context context)
抛出IOException,InterruptedException { for(IntWritable v:values){
System.err.println(v.toString()+“----- -----------”);
set.add(new WordCount(key.toString(),Integer.parseInt(v.toString())));
} if(10 <set.size()){
set.remove(set.last());
} } @覆盖
保护无效清理(上下文上下文)抛出IOException,InterruptedException {
for(WordCount w:set){
context.write(w,NullWritable.get());
}
}
}

WordCountTop_Cuan

包com.huhu.day05; 

导入org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.jobcontrol.JobControl;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.jobcontrol.ControlledJob;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; import com.huhu.day05.pojo.WordCount; 公共类WordCountTop_Cuan扩展ToolRunner实现工具{ 私人配置con; @覆盖
public配置getConf(){
如果(con!= null)
返回con;
返回新的配置();
} @覆盖
public void setConf(Configuration arg0){
} @覆盖
公共诠释运行(字符串[] arg0)抛出异常{
配置con = getConf();}
Job WordJob = Job.getInstance(con,“WordCount Job”);
WordJob.setJarByClass(WordCountTop_Cuan.class);
WordJob.setMapperClass(WordCount_Mapper.class);
WordJob.setMapOutputKeyClass(Text.class);
WordJob.setMapOutputValueClass(IntWritable.class); WordJob.setReducerClass(WordCount_Reducer.class);
WordJob.setOutputKeyClass(WordCount.class);
WordJob.setOutputValueClass(NullWritable.class); FileInputFormat.addInputPath(WordJob,new Path(“hdfs:// ry-hadoop1:8020 / in / ihaveadream.txt”));
Path path = new Path(“hdfs:// ry-hadoop1:8020 / out / Word_job.txt”);
FileSystem fs = FileSystem.get(getConf());
if(fs.exists(path)){
fs.delete(path,true);
}
FileOutputFormat.setOutputPath(WordJob,path); Job TopJob = Job.getInstance(con,“Top10 Job”);
TopJob.setJarByClass(WordCountTop_Cuan.class);
TopJob.setMapperClass(Top10_Mapper.class);
TopJob.setMapOutputKeyClass(Text.class);
TopJob.setMapOutputValueClass(IntWritable.class); TopJob.setReducerClass(Top10_Reducer.class);
TopJob.setOutputKeyClass(WordCount.class);
TopJob.setOutputValueClass(NullWritable.class); FileInputFormat.addInputPath(TOPJOB,路径);
Path paths = new Path(“hdfs:// ry-hadoop1:8020 / out / Top_Job.txt”);
if(fs.exists(paths)){
fs.delete(paths,true);
}
FileOutputFormat.setOutputPath(TopJob,paths); //重点
ControlledJob controlledWC = new ControlledJob(WordJob.getConfiguration());
ControlledJob controlledTP = new ControlledJob(TopJob.getConfiguration()); // JobTop依赖JobWC
controlledTP.addDependingJob(controlledWC);
//定义控制器
JobControl jobControl =新的JobControl(“WordCount和Top”);
jobControl.addJob(controlledWC);
jobControl.addJob(controlledTP); 线程线程=新线程(JobControl作业控制);
thread.start(); 而{(jobControl.allFinished()!)
了了Thread.sleep(1000);
} jobControl.stop(); 返回0;
} 公共静态无效的主要(字符串[]参数)抛出异常{ WordCountTop_Cuan wc = new WordCountTop_Cuan();
配置conf = wc.getConf();
String [] other = new GenericOptionsParser(conf,args).getRemainingArgs();
int run = ToolRunner.run(conf,wc,other);
System.exit(运行);
}
}

运行结果:

MapReduce(五)

MapReduce(五)

我是在本地运行的,如果在Hadoop的的上运行输入命令

hadoop jar xxx.jar /in/xx.txt /out/Word_Job.txt /out/Top_Job.txt

此时Top_Job依赖于Word_Job

因为Top_Job的输入路径是Word_Job的输出路径。当线程只启动一个工作,Top_job等待Word_Job运行完,Top_Job开始运行。

上一篇:Cousera课程Learning How to Learn学习报告


下一篇:K 均值算法(K-means)