动手深度学习11- 多层感知机pytorch简洁实现

多层感知机的简洁实现

import  torch
from torch import nn
from torch.nn import init
import sys
import numpy as np
sys.path.append('..')
import d2lzh_pytorch as d2l
定义模型
num_inputs,num_outputs,num_hidden =784,10,256
net = nn.Sequential(d2l.FlattenLayer(),
                   nn.Linear(num_inputs,num_hidden),
                    nn.ReLU(),
                    nn.Linear(num_hidden,num_outputs),
                   )
for params in net.parameters():
    init.normal_(params,mean=0,std=0.01)
    
print(net.parameters)
<bound method Module.parameters of Sequential(
  (0): FlattenLayer()
  (1): Linear(in_features=784, out_features=256, bias=True)
  (2): ReLU()
  (3): Linear(in_features=256, out_features=10, bias=True)
)>
读取数据
batch_size= 256
train_iter,test_iter = d2l.get_fahsion_mnist(batch_size)
损失函数
loss = nn.CrossEntropyLoss()
定义优化算法
optimizer = torch.optim.SGD(net.parameters(),lr=0.5)
num_epochs =5
训练数据并验证测试集
d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,batch_size,None,None,optimizer)
epoch 1, loss 0.0031, train acc 0.707, test acc 0.810
epoch 2, loss 0.0019, train acc 0.821, test acc 0.810
epoch 3, loss 0.0017, train acc 0.843, test acc 0.835
epoch 4, loss 0.0015, train acc 0.858, test acc 0.840
epoch 5, loss 0.0014, train acc 0.865, test acc 0.853

小结

  • 通过pytorch可以使用Sequential这样的写法简洁的实现多层感知机
上一篇:基于Kafka+Flink+Redis的电商大屏实时计算案例


下一篇:【计算机组成原理】第一篇 概论 第一章 计算机系统概论