KFold,StratifiedKFold k折交叉切分

python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

KFold,StratifiedKFold k折交叉切分

原文链接

https://blog.csdn.net/wqh_jingsong/article/details/77896449

StratifiedKFold用法类似Kfold,但是他是分层采样,确保训练集,测试集中各类别样本的比例与原始数据集中相同。

例子:

import numpy as np
from sklearn.model_selection import KFold,StratifiedKFold

X=np.array([
[1,2,3,4],
[11,12,13,14],
[21,22,23,24],
[31,32,33,34],
[41,42,43,44],
[51,52,53,54],
[61,62,63,64],
[71,72,73,74]
]) y=np.array([1,1,0,0,1,1,0,0])
#n_folds这个参数没有,引入的包不同,
floder = KFold(n_splits=4,random_state=0,shuffle=False)
sfolder = StratifiedKFold(n_splits=4,random_state=0,shuffle=False) for train, test in sfolder.split(X,y):
print('Train: %s | test: %s' % (train, test))
print(" ") for train, test in floder.split(X,y):
print('Train: %s | test: %s' % (train, test))
print(" ")

结果:

1.
Train: [1 3 4 5 6 7] | test: [0 2]

Train: [0 2 4 5 6 7] | test: [1 3]

Train: [0 1 2 3 5 7] | test: [4 6]

Train: [0 1 2 3 4 6] | test: [5 7]

2.
Train: [2 3 4 5 6 7] | test: [0 1]

Train: [0 1 4 5 6 7] | test: [2 3]

Train: [0 1 2 3 6 7] | test: [4 5]

Train: [0 1 2 3 4 5] | test: [6 7]

分析:可以看到StratifiedKFold 分层采样交叉切分,确保训练集,测试集中各类别样本的比例与原始数据集中相同。

 https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)

KFold,StratifiedKFold k折交叉切分

  

上一篇:Golang/Python/PHP带你彻底学会gRPC


下一篇:grpc python quickstart