1.环境准备
下载:http://mirror.bit.edu.cn/apache/hadoop/common/hadoop-2.7.2/hadoop-2.7.2.tar.gz
解压:解压后,修改etc/hadoop/hadoop-env.sh 中JAVA_HOME, 我的java_home(可以通过cat /etc/profile)是/user/java/latest
2.Hadoop Single_Node Cluster
参考官方文档:http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SingleCluster.html
3.WordCount示例
a.maven 配置(pom.xml)
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>my.hadoopstudy</groupId>
<artifactId>hadoopstudy</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>hadoopstudy</name>
<url>http://maven.apache.org</url>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.5.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.5.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.5.1</version>
</dependency>
<dependency>
<groupId>jdk.tools</groupId>
<artifactId>jdk.tools</artifactId>
<version>1.8.0_65</version>
<scope>system</scope>
<systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>
b.Mapper代码:
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
c.Reducer代码:
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
d.整个java代码如下:
package my.hadoopstudy.mapreduce; import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount {
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
} public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
e.打包: 在项目目录下 mvn package,将target中jar包放到hadoop目录下自己建的study目录
f.运行:bin/hadoop jar study/hadoopstudy-1.0-SNAPSHOT.jar my.hadoopstudy.mapreduce.WordCount /user/wangke/wordcount/input /user/wangke/wordcount/output
4.遇到的问题及解决方式:
a.JAVA_HOME一定要记得修改
b.要按照2中官方文档修改相关的xml文件配置
c.第二次按照官方pseudo-distributed,报错如下:hadoop-there-are-0-datanodes-running-and-no-nodes-are-excluded-in-this-operation
解决方式: sbin/stop_all.sh --> 删除current文件(rm -r /tmp/hadoop-admin/dfs/data/current) ,然后重新按照pseudo-distributed就没问题了
d.在pseudo-distributed下跑jar时,connecting to resourcemanager一直连不上,,retry。这是因为没有启动yarn(本来以为这个local跑的时候,根本不需要yarn,但是只有启动yarn,才能打开8032resourceManager端口)
解决方式:修改yarn-site.xml配置:
<configuration> <!-- Site specific YARN configuration properties -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>127.0.0.1:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>127.0.0.1:8030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>127.0.0.1:8031</value>
</property>
</configuration>
sbin/yarn-start.sh 发现执行成功,bin/hdfs dfs -cat /user/wangke/wordcount/output/part-r-00000 查看结果没问题