UVA 1541 - To Bet or Not To Bet(概率递推)

UVA 1541 - To Bet or Not To Bet

题目链接

题意:这题题意真是神了- -。看半天,大概是玩一个游戏,開始在位置0。终点在位置m + 1,每次扔一个硬币,正面走一步,反面走两步,走到的步上有4种情况:

1、向前走n步

2、向后走n步

3、停止一回合

4、无影响

问能在t次机会内,走到终点m + 1(假设跃过也算走到了)的概率。大于0.5。等于0.5,小于0.5相应不同输出

思路:题意懂了就好办了。事实上就是递推就能够了dp[i][j]表示第i次机会,落在j步的概率。然后不断一步步去递推就可以

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 55; int T, m, t, to[N];
double dp[N][N]; int tra() {
char str[10];
scanf("%s", str);
if (str[0] == '0') return 0;
if (str[0] == 'L') return INF;
else {
int num = 0, flag = (str[0] == '+' ? 1 : -1);
for (int i = 1; str[i]; i++)
num = num * 10 + str[i] - '0';
return num * flag;
}
} int main() {
scanf("%d", &T);
while (T--) {
scanf("%d%d", &m, &t);
for (int i = 1; i <= m; i++)
to[i] = tra();
to[m + 1] = 0;
memset(dp, 0, sizeof(dp));
dp[0][0] = 1;
for (int i = 0; i <= t; i++) {
for (int j = 0; j <= m; j++) {
if (to[min(m + 1, j + 1)] == INF)
dp[i + 2][min(m + 1, j + 1)] += dp[i][j] * 0.5;
else
dp[i + 1][min(max(0, j + 1 + to[min(m + 1, j + 1)]), m + 1)] += dp[i][j] * 0.5;
if (to[min(m + 1, j + 2)] == INF)
dp[i + 2][min(m + 1, j + 2)] += dp[i][j] * 0.5;
else
dp[i + 1][min(max(0, j + 2 + to[min(m + 1, j + 2)]), m + 1)] += dp[i][j] * 0.5;
}
}
double ans = 0;
for (int i = 0; i <= t; i++) ans += dp[i][m + 1];
if (ans > 0.5) printf("Bet for. ");
else if (ans < 0.5) printf("Bet against. ");
else printf("Push. ");
printf("%.4lf\n", ans);
}
return 0;
}
上一篇:javaCompileOptions { annotationProcessorOptions { includeCompileClasspath = true } }


下一篇:UVA 557 - Burger(概率 递推)