To the Max
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 46788 | Accepted: 24774 |
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1 8 0 -2
Sample Output
15
最大子段和的二维版本,把第i行到第j行合并成一行,做法就和一维的一样了,只要枚举i和j,找出最大值即为答案。
//2016.8.21
#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; const int N = ;
const int inf = 0x3f3f3f3f;
int a[N][N]; int main()
{
int n, tmp;
while(scanf("%d", &n)!=EOF)
{
for(int i = ; i < n; i++)
for(int j = ; j < n; j++)
scanf("%d", &a[i][j]); int ans = -inf;
for(int i = ; i < n-; i++)
{
//把第j行合并到第i行,求出第i行到第j行的最大子段和**************
for(int j = i; j < n; j++)
{
tmp = ;
for(int k = ; k < n; k++)
{
if(j > i) a[i][k]+=a[j][k];//把矩阵合并为一维的数组
if(tmp > ) tmp += a[i][k];
else tmp = a[i][k];
ans = max(ans, tmp);
}
}
//**************************************************************
} cout<<ans<<endl;
} return ;
}