Lucas定理

Lucas' theorem

In number theory, Lucas's theorem expresses the remainder of division of the binomial coefficient Lucas定理by a prime number p in terms of the base p expansions of the integers m and n.     ----wiki


##表达式

Lucas定理

对于非负整数mn和素数p,如果有:

![](http://7xrn7f.com1.z0.glb.clouddn.com/16-3-11/46939983.jpg)

则有下式成立:

![](http://7xrn7f.com1.z0.glb.clouddn.com/16-3-11/30039157.jpg)


##牛刀小试
题目链接:[hdu-3037](http://acm.hdu.edu.cn/showproblem.php?pid=3037)
题目大意:求在n棵树上摘不超过m颗豆子的方案,结果对p取模。
解题思路:
首先,n棵树上摘m课豆子的方案数相当于从n个数中可重复的选m个数的组合数,为Lucas定理。那么现在就是求Lucas定理

代码:
```c++
#include
#include
#include
using namespace std;
typedef long long LL;
const int N = 100001;
LL mod;
LL jc[N];

LL quick(LL a, LL b)

{

LL c = 1;

while(b)

{

if(b&1) c = c * a % mod;

b >>= 1;

a = a * a % mod;

}

return c;

}

LL NY(LL a)

{

return quick(a, mod-2);

}

void init()

{

jc[0] = 1;

for(LL i=1; i<mod; i++)

{

jc[i] = i * jc[i-1] % mod;

}

}

LL C(LL n, LL m)

{

if(n < m) return 0;

return jc[n] % mod * NY(jc[m]) % mod * NY(jc[n-m]) % mod;

}

LL Lucas(LL n, LL m)

{

if(!m) return 1;

return Lucas(n/mod, m/mod) * C(n%mod, m%mod) % mod;

}

int main()

{

LL n, m;

int t;

scanf("%d", &t);

while(t--)

{

scanf("%I64d %I64d %I64d", &n, &m, &mod);

init();

printf("%I64d\n", Lucas(n+m, m));

}

return 0;

}

上一篇:(素材源代码)猫猫学IOS(四)UI之半小时搞定Tom猫


下一篇:两小时搞定C#版超级战舰游戏