Dijkstra算法and Floyd算法 HDU 1874 畅通工程续

Dijkstra算法描述起来比较容易:它是求单源最短路径的,也就是求某一个点到其他各个点的最短路径,大体思想和prim算法差不多,有个数组dis,用来保存源点到其它各个点的距离,刚开始很好办,只需要把邻接矩阵里面它到其它点的距离复制过来就行了。剩下的步骤就是找到一个源点到其他点最小的距离,将它加入到已经确定下来的最短距离中,接着更新其他点到源点的距离,因为确定了一些点的最近距离之后,那么到其它未确定的点的距离可能会变小,所以更新一下。

理论完了 就要实践:http://acm.hdu.edu.cn/showproblem.php?pid=1874

AC代码:

 #include<iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = ;
const int INFINITY = ;
int Map[N][N];
void init(int n)
{
for (int i = ; i < n; i++)
for (int j = ; j < n; j++)
Map[i][j] = INFINITY;
}
//v0代表源点,n是总数,dis数组表示到其他点的距离
void dijkstra(int v0, int n, int dis[])
{
//标记是否已经找到最短距离
bool Final[n];
memset(Final, false, sizeof(Final));
for (int i = ; i < n; i++)
dis[i] = Map[v0][i];
dis[v0] = ;
//源点已经找到
Final[v0] = true;
int min_dis;
for (int i = ; i < n; i++)
{
min_dis = INFINITY;//找剩下的所有点中最小的一个
int k = ;
for (int j = ; j < n; j++)
{
if (!Final[j] && dis[j] < min_dis)
{
min_dis = dis[j];
k = j;
}
}
//如果最小的存在,就将它标记已经找到最短距离
if (min_dis < INFINITY)
Final[k] = true;
else
break;//如果找不到最小的,就是不连通图
for (int j = ; j < n; j++)//更新其他点到它的距离
{
if (!Final[j] && min_dis + Map[k][j] < dis[j])
{
dis[j] = min_dis + Map[k][j];
}
}
}
}
int main()
{
int n, m;
while (~scanf("%d %d", &n, &m))
{
init(n);
int a, b, x;
for (int i = ; i < m; i++)
{
scanf("%d %d %d", &a, &b, &x);
//两个城市之间的道路可能有多条,取最小的那条
if (Map[a][b] > x)
Map[a][b] = Map[b][a] = x;
}
int s, e;
scanf("%d %d", &s, &e);
int ans[n];
dijkstra(s, n, ans);
if (ans[e] < INFINITY)
printf("%d\n", ans[e]);
else
puts("-1");
} return ;
}

如果求任意两点之间的最短距离的话,Dijkstra的时间复杂度是O(n^3),用Floyd的话也是O(n^3),但是代码更简洁,更稠密的图实际运行效率更快。它的主要思路就是:因为求任意两点之间的最短距离,那么它得用一个二维数组来实现,其实这个二位数组就可以用邻接矩阵来表示,刚开始是一个点到另外一个点的直接距离,直接距离就是指不经过第三个点可以的距离,算法的整个精髓就是,求点v->w的最短距离,用另外一个点来作为中间点,求v->u>w的距离,如果后者的距离小于前者的距离,就更新v->w的距离。代码一共三层for循环,第一层的意思就是除了这行这列的之外的任意两点之间的距离 通过这个点来作为中间点,一共n个点,所以循环n次,二三两层for循环是从第二个for循环里的点到第三个for循环里的点与通过中间点就行比较。核心代码如下:

 void Floyd(int n)
{
for (int i = ; i < n; i++)
for (int j = ; j < n; j++)
for (int k = ; k < n; k++)
if (Map[j][i] + Map[i][k] < Map[j][k])
Map[j][k] = Map[j][i] + Map[i][k];
}

还是这个题,附AC代码:

 #include<iostream>
#include <cstdio>
using namespace std;
const int N = ;
const int INFINITY = ;
int Map[N][N];
void init(int n)
{
for (int i = ; i < n; i++)
for (int j = ; j < n; j++)
if (i != j)
Map[i][j] = INFINITY;
}
void Floyd(int n)
{
for (int i = ; i < n; i++)
for (int j = ; j < n; j++)
for (int k = ; k < n; k++)
if (Map[j][i] + Map[i][k] < Map[j][k])
Map[j][k] = Map[j][i] + Map[i][k];
}
int main()
{
int n, m;
while (~scanf("%d %d", &n, &m))
{
init(n);
int a, b, x;
for (int i = ; i < m; i++)
{
scanf("%d %d %d", &a, &b, &x);
if (Map[a][b] > x)
{
Map[a][b] = Map[b][a] = x;
}
}
Floyd(n);
int s, e;
scanf("%d %d", &s, &e);
if (Map[s][e] < INFINITY)
printf("%d\n", Map[s][e]);
else
puts("-1");
} return ;
}
上一篇:MySQL中show语法使用总结


下一篇:mysql LIKE通配符 语法