迷宫问题 Maze 4X4 (sloved by backtrack)

Description


 

 迷宫问题 Maze 4X4 (sloved by backtrack)

  给定一个N*N的迷宫中,(0,0)为起始点,(N-1,N-1)为目的地,求可通往目的地的多个解

思路


这道题其实就是简单的DFS,一路探索到底,没路就回溯到交叉口。

 #include <iostream>
#include <vector>
#include <cstring>
using namespace std; typedef struct
{
int x;
int y;
}pos; #define N 4 //4*4 maze
#define ENTER_X 0
#define ENTER_Y 0
#define EXIT_X N-1
#define EXIT_Y N-1 int Maze[N][N];
int paths; //sum of paths
vector<pos> Path; //svae paths
vector<pos> BestPath; //save min distant path void InitMaze();
bool MazeTrack(int x,int y); int main()
{
InitMaze();
int i = , j = ;
for(i=;i<N;i++)
{ for(j=;j<N;j++)
cout << Maze[i][j];
cout << endl;
}
MazeTrack(ENTER_X,ENTER_Y);
return ;
} void InitMaze()
{
int a[N][N] = {
{,,,},
{,,,},
{,,,},
{,,,}
};
memcpy(Maze,a,sizeof(a));
paths = ;
} bool MazeTrack(int x,int y)
{
bool IsPath = false;
pos p;
p.x = x;
p.y = y;
//set range of maze's x/y
if(x<N && x>= && y<N && y>= && Maze[x][y]==)
{
//make
Path.push_back(p);
Maze[x][y] = ; //if value is 1,you can't go there cout << "now,position is("<<x<<","<<y<<")" << endl;
//terminal
if(x==EXIT_X && y==EXIT_Y)
{
cout << "find a path" << endl;
paths++;
IsPath = true;
vector<pos>::iterator it;
for(it=Path.begin() ; it!=Path.end() ; it++)
cout << "("<< it->x <<","<< it->y <<")" << " ";
cout << endl;
return IsPath;
}
//search (find forward solutions)
IsPath = MazeTrack(x-,y) || MazeTrack(x,y-) || MazeTrack(x+,y) || MazeTrack(x,y+);
//backtrack
if(!IsPath)
{
Path.pop_back();
Maze[x][y] = ;
}
cout << Path.size() << endl;
}
//fuction exit
return IsPath;
}

输出的解:


now,position is(,)
now,position is(,)
now,position is(,)
now,position is(,)
now,position is(,) now,position is(,)
now,position is(,)
now,position is(,)
now,position is(,)
now,position is(,)
find a path
(,) (,) (,) (,) (,) (,) (,)

solution

我是第一次用回溯法,参考了下面的用回溯法解迷宫问题的模板:

  using namespace std;
#define N 100
#define M 100 typedef struct
{
int x;
int y;
}Point; vector<Point>solutionPath ; //存放有解的坐标路径 //主函数 x,y默认为起始结点,如(0,0), 得到从起始结点到目的结点的路径。
bool hasSolutionFunction( template<typename T>* Matrix , int x, int y)
{ bool *visited = new bool[M*N];
memset (visited,,M*N); //visited 存放每个结点是否被遍历,true为已经遍历过,false为否 res = hasSolutionCore(Matrix , x ,y)
cout<<solutionPath<<endl;
return res } //深度遍历求解路径的函数
bool hasSolutionCore(template<typename T>* Matrix , int x, int y)
{ hasSolution = false;
Point p = Point(x,y); if (x,y) is terminal //x,y 已经是终止条件,当求解到这个结点是叶结点或目的地
{
solutionPath.push_back(p);
return true;
} if ((x,y) && visited[x][y]==flase )// x,y是合法结点(具体条件可扩展),且未被访问过
{
visited[x][y] = true;
solutionPath.push_back(p); hasSolution = hasSolutionCore(Matrix,x-, y) ||hasSolutionCore(Matrix,x,y-)||... //如果不是叶结点,则该路径是否有解取决于其他方向的往后求解。 // x,y结点以下的所有子路径都无解,则回溯
if (!hasSolution)
{
visited[x][y] = false;
solutionPath.pop_back();
} }
return hasSolution; }
上一篇:Day7 子类调用父类的方法supper 绑定方法与非绑定方法


下一篇:OpenGL超级宝典笔记----框架搭建