计算相关性

 1 def mean(x):
 2     return sum(x) / len(x)
 3 # 计算每一项数据与均值的差
 4 def de_mean(x):
 5     x_bar = mean(x)
 6     return [x_i - x_bar for x_i in x]
 7 # 辅助计算函数 dot product 、sum_of_squares
 8 def dot(v, w):
 9     return sum(v_i * w_i for v_i, w_i in zip(v, w))
10 def sum_of_squares(v):
11     return dot(v, v)
12 # 方差
13 def variance(x):
14     n = len(x)
15     deviations = de_mean(x)
16     return sum_of_squares(deviations) / (n - 1)
17 # 标准差
18 import math
19 def standard_deviation(x):
20     return math.sqrt(variance(x))
21 # 协方差
22 def covariance(x, y):
23     n = len(x)
24     return dot(de_mean(x), de_mean(y)) / (n -1)
25 # 相关系数
26 def correlation(x, y):
27     stdev_x = standard_deviation(x)
28     stdev_y = standard_deviation(y)
29     if stdev_x > 0 and stdev_y > 0:
30         return covariance(x, y) / stdev_x / stdev_y
31     else:
32         return 0
33 correlation(acc_list, pvalue_list)

 

参考:

https://www.jianshu.com/p/c83dd487df09

上一篇:差分进化算法(DE)的C++面向对象方法实现


下一篇:redis 模仿队列