1. 关于非线性转化方程(non-linear transformation function)
sigmoid函数(S 曲线)用来作为activation function: sigmoid函数是一个在生物学中常见的S型函数,也称为S型生长曲线。 在信息科学中,由于其单增以及反函数单增等性质,sigmoid函数常被用作神经网络的阈值函数,将变量映射到0,1之间。具有这种性质的S型函数统称为sigmoid函数。 1.1 双曲函数(tanh) 双曲函数(hyperbolic function)可借助指数函数定义双曲正弦: 双曲余弦: 双曲正切: 导数:
可以看到tanhx呈S型
1.2 逻辑函数(logistic function)其实logistic函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线(S型曲线)。
导数:
2. 手动实现一个简单的神经网络算法
# -*- coding:utf-8 -*- import numpy as np def tanh(x): return np.tanh(x) def tanh_deriv(x): return 1.0 - np.tanh(x) * np.tanh(x) def logistic(x): return 1/(1 + np.exp(x)) def logistic_derivative(x): return logistic(x) * (1 - logistic(x)) class NeuralNetwork: def __init__(self, layers, activation = 'tanh'): """ :param layers: A list containing the number of units in each layer. Should be at least two values :param activation: The activation function to be used. Can be "logistic" or "tanh" """ if activation == 'logistic': self.activation = logistic self.activation_deriv = logistic_derivative elif activation == 'tanh': self.activation = tanh self.activation_deriv = tanh_deriv self.weights = [] for i in range(1, len(layers) - 1): self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i] + 1)) - 1 )*0.25) self.weights.append((2*np.random.random((layers[i] + 1, layers[i + 1])) - 1)*0.25) def fit(self, X, y, learning_rate = 0.2, epochs = 10000): #epochs = 10000 抽样更新 10000次 X = np.atleast_2d(X) #至少2维 temp = np.ones([X.shape[0], X.shape[1] + 1])#初始化矩阵 temp[: ,0:-1] = X # adding the bias unit to the input layer 每一行 从第一列到最后一列 不包含最后一列 X = temp y = np.array(y) for k in range(epochs): #第一次循环 i = np.random.randint(X.shape[0]) #X里面随机选取一行 a = [X[i]] #第i行 for l in range(len(self.weights)): #going forward network, for each layer a.append(self.activation(np.dot(a[l], self.weights[l]))) #Computer the node value for each layer (O_i) using activation function error = y[i] - a[-1] #Computer the error at the top layer #对于输出层 deltas = [error * self.activation_deriv(a[-1])] #For output layer, Err calculation (delta is updated error) # Staring backprobagation #(len(a) - 2)因为不能算第一层和最后一层;最后一层到0层,倒回去 for l in range(len(a) - 2, 0 ,-1):# we need to begin at the second to last layer #Compute the updated error (i,e, deltas) for each node going from top layer to input layer #对于隐藏层 deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l])) deltas.reverse()#0层到最后一层 for i in range(len(self.weights)):#权重更新 layer = np.atleast_2d(a[i]) delta = np.atleast_2d(deltas[i]) self.weights[i] += learining_rate * layer.T.dot(delta) def predict(self, x): x = np.array(x) temp = np.ones(x.shape[0] + 1) temp[0 : -1] = x a = temp for l in range(0, len(self.weights)): a = self.activation(np.dot(a, self.weights[1])) return a