获取STM32系列APB1/APB2/HCLK/SYSCLK系统时钟频率使用J-Link-RTT打印

获取STM3F10x系列系统各时钟频率

在STM32F10x系列库函数stm32f10x_rcc.c中有函数void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)用来获取系统APB1、APB2、HCLK、SYSCLK等频率。

一、获取系统各时钟频率

RCC_ClocksTypeDef RCC_CLK;
int main(void)
{	
	vSystem_Init();
	
	RCC_GetClocksFreq(&RCC_CLK);//Get chip frequencies
	#if ( USE_SEGGER_RTT_ENABLE > 0 )//Use segger rtt enable
	SEGGER_RTT_printf(0, "System Clock Source : %d\r\n", RCC_GetSYSCLKSource());
	SEGGER_RTT_printf(0, "APB1/PCLK1 : %dHZ\r\n", RCC_CLK.PCLK1_Frequency);
	SEGGER_RTT_printf(0, "APB2/PCLK2 : %dHZ\r\n", RCC_CLK.PCLK2_Frequency);
	SEGGER_RTT_printf(0, "SYSCLK     : %dHZ\r\n", RCC_CLK.SYSCLK_Frequency);
	SEGGER_RTT_printf(0, "HCLK       : %dHZ\r\n", RCC_CLK.HCLK_Frequency);
	#endif

	while(1)
	{
		vKeyBoard_Service_Handle();
		PAout(6) = 0;
		vDelay_ms(100);
		PAout(6) = 1;
		vDelay_ms(1000);
	}
}

二、时钟频率显示结果

00> Build Times: Mar 14 2020  08:57:46
00> STM32F103xx  Start Running......
00> 
00> System Clock Source  : 8
00> APB1/PCLK1Â : 64000000HZ
00> APB2/PCLK2Â : 64000000HZ
00> SYSCLK      : 64000000HZ
00> HCLK        : 64000000HZ

获取STM32系列APB1/APB2/HCLK/SYSCLK系统时钟频率使用J-Link-RTT打印
获取STM32系列APB1/APB2/HCLK/SYSCLK系统时钟频率使用J-Link-RTT打印注意:
1. RCC_GetSYSCLKSource()获取系统时钟源的来源。
0x00 : HSI used as system clock
0x04 : HSE used as system clock
0x08 : PLL used as system clock
2. 本次使用STM32F103R8T6芯片。
3. 我的板子无外部晶振,而是通过内部高速振荡器(HSI)倍频得到系统时钟频率,因此最大频率只能倍频到64MHZ。

三、RCC_GetSYSCLKSource()源码

/**
* @brief  Returns the clock source used as system clock.
* @param  None
* @retval The clock source used as system clock. The returned value can
*   be one of the following:
*     - 0x00: HSI used as system clock
*     - 0x04: HSE used as system clock
*     - 0x08: PLL used as system clock
*/
uint8_t RCC_GetSYSCLKSource(void)
{
	return ((uint8_t)(RCC->CFGR & CFGR_SWS_Mask));
}

四、RCC_GetClocksFreq()源码

/**
* @brief  Returns the frequencies of different on chip clocks.
* @param  RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which will hold
*         the clocks frequencies.
* @note   The result of this function could be not correct when using 
*         fractional value for HSE crystal.  
* @retval None
*/
void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)
{
	uint32_t tmp = 0, pllmull = 0, pllsource = 0, presc = 0;

	#ifdef  STM32F10X_CL
	uint32_t prediv1source = 0, prediv1factor = 0, prediv2factor = 0, pll2mull = 0;
	#endif /* STM32F10X_CL */

	#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL)
	uint32_t prediv1factor = 0;
	#endif

	/* Get SYSCLK source -------------------------------------------------------*/
	tmp = RCC->CFGR & CFGR_SWS_Mask;

	switch (tmp)
	{
		case 0x00:  /* HSI used as system clock */
			RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
		break;
		
		case 0x04:  /* HSE used as system clock */
			RCC_Clocks->SYSCLK_Frequency = HSE_VALUE;
		break;
		
		case 0x08:  /* PLL used as system clock */
			/* Get PLL clock source and multiplication factor ----------------------*/
			pllmull = RCC->CFGR & CFGR_PLLMull_Mask;
			pllsource = RCC->CFGR & CFGR_PLLSRC_Mask;

			#ifndef STM32F10X_CL      
			pllmull = ( pllmull >> 18) + 2;
			if (pllsource == 0x00)
			{/* HSI oscillator clock divided by 2 selected as PLL clock entry */
				RCC_Clocks->SYSCLK_Frequency = (HSI_VALUE >> 1) * pllmull;
			}
			else
			{
				#if defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || defined (STM32F10X_HD_VL)
				prediv1factor = (RCC->CFGR2 & CFGR2_PREDIV1) + 1;
				/* HSE oscillator clock selected as PREDIV1 clock entry */
				RCC_Clocks->SYSCLK_Frequency = (HSE_VALUE / prediv1factor) * pllmull; 
				#else
				/* HSE selected as PLL clock entry */
				if ((RCC->CFGR & CFGR_PLLXTPRE_Mask) != (uint32_t)RESET)
				{/* HSE oscillator clock divided by 2 */
					RCC_Clocks->SYSCLK_Frequency = (HSE_VALUE >> 1) * pllmull;
				}
				else
				{
					RCC_Clocks->SYSCLK_Frequency = HSE_VALUE * pllmull;
				}
				#endif
			}
			#else
			pllmull = pllmull >> 18;

			if (pllmull != 0x0D)
			{
				pllmull += 2;
			}
			else
			{ /* PLL multiplication factor = PLL input clock * 6.5 */
				pllmull = 13 / 2; 
			}

			if (pllsource == 0x00)
			{/* HSI oscillator clock divided by 2 selected as PLL clock entry */
				RCC_Clocks->SYSCLK_Frequency = (HSI_VALUE >> 1) * pllmull;
			}
			else
			{/* PREDIV1 selected as PLL clock entry */
				/* Get PREDIV1 clock source and division factor */
				prediv1source = RCC->CFGR2 & CFGR2_PREDIV1SRC;
				prediv1factor = (RCC->CFGR2 & CFGR2_PREDIV1) + 1;

				if (prediv1source == 0)
				{ /* HSE oscillator clock selected as PREDIV1 clock entry */
					RCC_Clocks->SYSCLK_Frequency = (HSE_VALUE / prediv1factor) * pllmull;          
				}
				else
				{/* PLL2 clock selected as PREDIV1 clock entry */
					/* Get PREDIV2 division factor and PLL2 multiplication factor */
					prediv2factor = ((RCC->CFGR2 & CFGR2_PREDIV2) >> 4) + 1;
					pll2mull = ((RCC->CFGR2 & CFGR2_PLL2MUL) >> 8 ) + 2; 
					RCC_Clocks->SYSCLK_Frequency = (((HSE_VALUE / prediv2factor) * pll2mull) / prediv1factor) * pllmull;                         
				}
			}
			#endif /* STM32F10X_CL */ 
		break;

		default:
		RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
		break;
	}

	/* Compute HCLK, PCLK1, PCLK2 and ADCCLK clocks frequencies ----------------*/
	/* Get HCLK prescaler */
	tmp = RCC->CFGR & CFGR_HPRE_Set_Mask;
	tmp = tmp >> 4;
	presc = APBAHBPrescTable[tmp];
	/* HCLK clock frequency */
	RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> presc;
	/* Get PCLK1 prescaler */
	tmp = RCC->CFGR & CFGR_PPRE1_Set_Mask;
	tmp = tmp >> 8;
	presc = APBAHBPrescTable[tmp];
	/* PCLK1 clock frequency */
	RCC_Clocks->PCLK1_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
	/* Get PCLK2 prescaler */
	tmp = RCC->CFGR & CFGR_PPRE2_Set_Mask;
	tmp = tmp >> 11;
	presc = APBAHBPrescTable[tmp];
	/* PCLK2 clock frequency */
	RCC_Clocks->PCLK2_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
	/* Get ADCCLK prescaler */
	tmp = RCC->CFGR & CFGR_ADCPRE_Set_Mask;
	tmp = tmp >> 14;
	presc = ADCPrescTable[tmp];
	/* ADCCLK clock frequency */
	RCC_Clocks->ADCCLK_Frequency = RCC_Clocks->PCLK2_Frequency / presc;
}
上一篇:Lattices and Cryptography(格理论与密码学)


下一篇:SVD的几何理解 2021-04-27